Bioinspired self-assembly supramolecular hydrogel for ocular drug delivery

Author(s):  
Xianglian Li ◽  
Hui Liu ◽  
Ailing Yu ◽  
Dan Lin ◽  
Zhishu Bao ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Pin Chen ◽  
Xin Wang ◽  
Yan Dong ◽  
Xiaohong Hu

Hydrogel is a kind of attractive drug carriers because of its good biocompatibility and transparency. But traditional hydrogel showed some restrictions in its application in ocular drug delivery. A simple surface modification technique based on layer-by-layer (LbL) self-assembled multilayer for ocular drug delivery was developed in this work. Polycarboxymethyl-β-cyclodextrin (poly(CM-β-CD))/poly-l-lysine (PLL) multilayer film was designed and constructed for ocular drug delivery, sinceβ-CD showed good drug delivery property. The properties such as the contact angle and transparency varied a little with the deposition of poly(CM-β-CD)/PLL multilayer. Orfloxacin and puerarin were loaded into multilayer during the self-assembly procedure by two methods, which were tracked by the largest drug absorbance of UV spectrum. The loaded drug amount by incorporating drugs into poly(CM-β-CD) solution was larger than that by incorporating drugs into PLL solution. The loaded drug in the multilayer could gradually be released from multilayer in some period either for orfloxacin or for puerarin. The drug release behavior was influenced by drug loading method and pH value of released medium. Moreover, the balanced released drug amount by incorporating drugs into poly(CM-β-CD) solution is much smaller than that by incorporating drugs into PLL solution.


2017 ◽  
Vol 5 (4) ◽  
pp. 698-706 ◽  
Author(s):  
Li Yin ◽  
Shuxin Xu ◽  
Zujian Feng ◽  
Hongzhang Deng ◽  
Jianhua Zhang ◽  
...  

A novel injectable and high-solid-content drug-loaded supramolecular hydrogel (PTX-mPECT NP/α-CDgel) was prepared by self-assembly of inclusion complexes based on PTX-loaded mPECT nanoparticles and α-cyclodextrin.


2016 ◽  
Vol 17 (3) ◽  
pp. 798-807 ◽  
Author(s):  
Zhaoliang Zhang ◽  
Zhifen He ◽  
Renlong Liang ◽  
Yi Ma ◽  
Wenjuan Huang ◽  
...  

Author(s):  
Prashant Malik ◽  
Neha Gulati ◽  
Raj Kaur Malik ◽  
Upendra Nagaich

Nanotechnology deal with the particle size in nanometers. Nanotechnology is ranging from extensions of conventional device physics to completely new approaches based upon molecular self assembly, from developing new materials with dimensions on the nanoscale to direct control of matter on the atomic scale. In nanotechnology mainly three types of nanodevices are described: carbon nanotubes, quantum dots and dendrimers. It is a recent technique used as small size particles to treat many diseases like cancer, gene therapy and used as diagnostics. Nanotechnology used to formulate targeted, controlled and sustained drug delivery systems. Pharmaceutical nanotechnology embraces applications of nanoscience to pharmacy as nanomaterials and as devices like drug delivery, diagnostic, imaging and biosensor materials. Pharmaceutical nanotechnology has provided more fine tuned diagnosis and focused treatment of disease at a molecular level.    


2013 ◽  
Vol 21 (2) ◽  
pp. 194-199
Author(s):  
Zhaoxu Tu ◽  
Xianghui Xu ◽  
Yeting Jian ◽  
Dan Zhong ◽  
Bin He ◽  
...  
Keyword(s):  

Author(s):  
Smriti Sharma ◽  
Vinayak Bhatia

: In this review nanoscale based drug delivery systems particularly in relevance to the antiglaucoma drugs have been discussed. In addition to that, the latest computational/in silico advances in this field are examined in brief. Using nanoscale materials for drug delivery, is an ideal option to target tumours and drug can be released at areas of the body where traditional drugs may fail to act. Nanoparticles, polymeric nanomaterials, single-wall carbon nanotubes (SWCNTs), quantum dots (QDs), liposomes and graphene are the most important nanomaterials used for drug delivery. Ocular drug delivery is one of the most common and difficult tasks faced by pharmaceutical scientists because of many challenges like circumventing the blood–retinal barrier, corneal epithelium and the blood–aqueous barrier. Authors found compelling empirical evidence of scientists relying on in-silico approaches to develop novel drugs and drug delivery systems for treating glaucoma. This review in nanoscale drug delivery systems will help us in understand the existing queries and evidence gaps and will pave way for effective design of novel ocular drug delivery systems


Sign in / Sign up

Export Citation Format

Share Document