The effect of substrate media on the removal of arsenic, boron and iron from an acidic wastewater in planted column reactors

2012 ◽  
Vol 179 ◽  
pp. 119-130 ◽  
Author(s):  
K. Lizama Allende ◽  
T.D. Fletcher ◽  
G. Sun
2016 ◽  
Vol 15 (8) ◽  
pp. 1721-1728
Author(s):  
Pavel Janos ◽  
Alexandra Eletskaya ◽  
Vera Pilarova
Keyword(s):  

2019 ◽  
Vol 18 (12) ◽  
pp. 2655-2662
Author(s):  
Yongliang Wang ◽  
Peiwei Han ◽  
Yonggang Lu ◽  
Li Xiao ◽  
Yingchao Du ◽  
...  

2003 ◽  
Vol 3 (5-6) ◽  
pp. 303-310 ◽  
Author(s):  
S.-H. Yi ◽  
S. Ahmed ◽  
Y. Watanabe ◽  
K. Watari

Conventional arsenic removal processes have difficulty removing low concentrations of arsenic ion from water. Therefore, it is very hard to comply with stringent low levels of arsenic, such as below 10 μg/L. So, we have developed two arsenic removal processes which are able to comply with more stringent arsenic regulations. They are the MF membrane process combined with chemical sludge adsorption and NF membrane process equipped with the vibratory shear enhanced process (VSEP). In this paper, we examine the performance of these new processes for the removal of arsenic ion of a low concentration from water. We found that chemical sludge produced in the conventional rapid sand filtration plants can effectively remove As (V) ions of H2AsO4- and HAsO42- through anion exchange reaction. The removal efficiency of MF membrane process combined with chemical sludge adsorption increased to about 36%, compared to MF membrane alone. The strong shear force on the NF membrane surface produced by vibration on the VSEP causes the concentration polarization layer to thin through increased back transport velocity of particles. So, it can remove even dissolved constituents effectively. Therefore, As (V) ions such as H2AsO4- and HAsO42- can be removed. The concentration of As (V) ions decreased from 50 μg/L to below 10 μg/L and condensation factor in recirculating water increased up to 7 times by using NF membrane equipped with VSEP.


2019 ◽  
Author(s):  
Joanne U. Angai ◽  
◽  
Carol J. Ptacek ◽  
Brent R. Verbuyst ◽  
Jeff G. Bain ◽  
...  
Keyword(s):  

2021 ◽  
Vol 19 (1) ◽  
pp. 530-540
Author(s):  
Lvshan Zhou ◽  
Tongjiang Peng ◽  
Hongjuan Sun ◽  
Dong Fu ◽  
Chuan Lai

Abstract The acidic wastewater produced by the wet production of activated clay contains valuable components such as iron and aluminum. The precipitation method was successfully introduced to separate iron and aluminum from the activated clay production wastewater step by step, which can not only recover the valuable components, but also avoid environmental pollution. In the separation process, gypsum, iron aluminum phosphate, alumina, and sodium sulfate were prepared, and the phase compositions of separation products were analyzed by XRD and IR. The main influencing factors in the separation of iron and aluminum components were studied by single factor experiment. The results show that at the optimized conditions, phosphorus/iron molar ratio 6.0, the system pH 3.0, the reaction temperature 343 K, and the reaction time 90 min, the iron(iii) ion in the system can form a sodium-containing aluminum iron phosphate double salt, and the filtrate after separating Fe3+ and part of Al3+ can meet the requirements for forming high-purity Al2O3. During the phosphate precipitation process, the hypothesis should be correct that Al3+ reacts with PO 4 3 − {\text{PO}}_{4}^{3-} to form an AlPO4 skeleton, Fe3+ isomorphically replaces Al3+ in the [AlO4] tetrahedron, and adsorption occurs simultaneously, with Na+ occupying the terminal acid sites, P(Al)–OH.


2021 ◽  
Vol 49 (4) ◽  
pp. 2000233
Author(s):  
Trung Huu Bui ◽  
Van Sy Pham ◽  
Nguyen Thanh‐Nho ◽  
Quoc An Trieu

Sign in / Sign up

Export Citation Format

Share Document