Effect of wastewater particles on catalytic ozonation in the advanced treatment of petrochemical secondary effluent

2018 ◽  
Vol 345 ◽  
pp. 280-289 ◽  
Author(s):  
Siyu Zhang ◽  
Changyong Wu ◽  
Yuexi Zhou ◽  
Yaning Wang ◽  
Xuwen He
2013 ◽  
Vol 68 (7) ◽  
pp. 1665-1671 ◽  
Author(s):  
U. Hübner ◽  
M. Jekel

New and higher standards in the EU water framework directive necessitate advanced treatment of secondary effluents for reduction of trace organic compounds (TrOCs) and nutrients before the discharge into receiving surface waters. Due to its dual function as oxidant and coagulant, ferrate is considered as a promising alternative for tertiary treatment. The oxidation of selected TrOCs and simultaneous flocculation of phosphates by ferrate was tested in batch experiments with secondary effluent from Berlin Ruhleben. The concentrations of carbamazepine (CBZ) and diclofenac were reduced by >90% with ferrate dosages of 6 mg/L as Fe. CBZ was transformed to 1-(2-benzaldehyde)-4-hydro-(1H,3H)-quinazoline-2-one, which is known as the major product from the reaction of CBZ with ozone. In contrast to ozonation, no further transformation of this product was observed. The concentration of ibuprofen was not reduced by ferrate treatment. For efficient removal of 60–100 μg/L phosphate-P to values <20 μg/L, ferrate dosages of 3–4 mg/L as Fe were sufficient.


2016 ◽  
Vol 75 (5) ◽  
pp. 1025-1033 ◽  
Author(s):  
Zheng Cheng ◽  
Rendang Yang ◽  
Yang Wang

Herein a Mn-deposited sepiolite catalyst was obtained through a facile co-precipitation method, and then used as the heterogeneous ozonation catalysts applied to the tertiary treatment of regenerated-papermaking wastewater. During the process, the as-prepared catalyst was endowed with higher Brunauer–Emmett–Teller specific surface area of 412.3 m2/g compared to 124.6 m2/g of the natural sepiolite. Hence, in the adsorption of methylene blue, the as-prepared catalyst was observed with a very high removal rate of 96.2% although a little lower than the modified sepiolite of 97.5% in 100 min. And for practical application, the catalyst was used for treating the effluent from regenerated-papermaking industry, via a heterogeneous catalytic ozonation process. Consequently, the highest color removal rate of 99.5%, and the highest chemical oxygen demand (COD) removal efficiency of 73.4% were achieved in 20 and 30 min, respectively. As a result, the treated wastewater was more biodegradable and less toxic; the biochemical oxygen demand (BOD5)/COD value could reach 0.41. Moreover, the catalyst showed superior stability at successive ozonation runs. The main possible reaction pathway is also presented. The results indicate that catalytic ozonation was proved to be effective when Mn/sepiolite was used as catalysts applied to the advanced treatment of regenerated-papermaking wastewater.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3365
Author(s):  
Na Li ◽  
Yu Xia ◽  
Xuwen He ◽  
Weijia Li ◽  
Lianhua Yuan ◽  
...  

Biological processes have high removal efficiencies and low operational costs, but the secondary effluent of coking wastewater (CWW), even at a low concentration, is difficult for microorganisms to degrade directly. In this study, glucose was used as a carbon source and co-metabolic substrate for microbial acclimation in order to enhance the advanced treatment of coking wastewater (CWW). The removal performance of the pollutants, especially recalcitrant compounds, was studied and the changes in the microbial community structure after activated sludge acclimation were analyzed. The effect of glucose addition on the secondary biochemical effluent of coking wastewater (SBECW) treatment by the acclimated sludge was further studied by a comparison between the performance of two parallel reactors seeded with the acclimated sludge. Our results showed that the concentrations of chemical oxygen demand (COD), total organic carbon (TOC), and UV absorption at 254 nm (UV254) of the wastewater decreased in the acclimation process. Refractory organic matter, such as polycyclic aromatic hydrocarbons and nitrogen-containing heterocyclics, in the SBECW was effectively degraded by the acclimated sludge. High-throughput sequencing revealed that microbes with a strong ability to degrade recalcitrant compounds were enriched after acclimation, such as Thauera (8.91%), Pseudomonas (3.35%), and Blastocatella (10.76%). Seeded with the acclimated sludge, the reactor with the glucose addition showed higher COD removal efficiencies than the control system without glucose addition (p < 0.05). Collectively, glucose addition enhanced the advanced treatment of coking wastewater (CWW).


2004 ◽  
Vol 159 (1) ◽  
pp. 313-324 ◽  
Author(s):  
Weimin Xie ◽  
Qunhui Wang ◽  
Jie Yao ◽  
Hongzhi Ma ◽  
Yukihide Ohsumi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document