refractory organic matter
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 13)

H-INDEX

16
(FIVE YEARS 2)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Clara Martínez-Pérez ◽  
Chris Greening ◽  
Sean K. Bay ◽  
Rachael J. Lappan ◽  
Zihao Zhao ◽  
...  

AbstractThroughout coastal Antarctica, ice shelves separate oceanic waters from sunlight by hundreds of meters of ice. Historical studies have detected activity of nitrifying microorganisms in oceanic cavities below permanent ice shelves. However, little is known about the microbial composition and pathways that mediate these activities. In this study, we profiled the microbial communities beneath the Ross Ice Shelf using a multi-omics approach. Overall, beneath-shelf microorganisms are of comparable abundance and diversity, though distinct composition, relative to those in the open meso- and bathypelagic ocean. Production of new organic carbon is likely driven by aerobic lithoautotrophic archaea and bacteria that can use ammonium, nitrite, and sulfur compounds as electron donors. Also enriched were aerobic organoheterotrophic bacteria capable of degrading complex organic carbon substrates, likely derived from in situ fixed carbon and potentially refractory organic matter laterally advected by the below-shelf waters. Altogether, these findings uncover a taxonomically distinct microbial community potentially adapted to a highly oligotrophic marine environment and suggest that ocean cavity waters are primarily chemosynthetically-driven systems.


2021 ◽  
pp. 0734242X2110662
Author(s):  
Yuyu Huang

In this study, the transformation and degradation mechanisms of refractory organic matter in biologically treated leachate from a semi-aerobic aged refuse biofilter (SAARB) in a nano-Fe3O4 enhanced ozonation process (nFe3O4-O3) were investigated in batch experiments. A continuous experiment then confirmed the effectiveness of the process for SAARB effluent treatment. In a batch experiment, the effects of influencing factors, including nFe3O4 dosage, O3 dosage and initial pH on the treatment performance of nFe3O4-O3 process, were comprehensively investigated. The results showed that when the nFe3O4 dosage = 6 g L−1, O3 dosage = 0.15 L minute−1 and initial pH = 7, the total organic carbon, absorbance at 254 nm and colour number removal efficiencies were 40.58%, 62.55% and 89.80%, respectively. In addition, most of the humic- and fulvic-like substances in the SAARB effluent were removed, and the condensation degree, aromaticity and humification degree of the organics were substantially reduced. The morphology and elemental valence state analysis showed that the nFe3O4 in the process was relatively stable and could form an nFe3O4-organic complex. Therefore, the probability of organics reacting with hydroxyl radical increased and the oxidation efficiency was enhanced. In the continuous experiment, both the O3 dosage and hydraulic retention time (HRT) were the key influencing factors. The treatment efficiency of the nFe3O4-O3 process was enhanced at a higher O3 dosage and longer HRT. The electrical energy consumption of the continuous nFe3O3-O3 process was calculated to be 17.72 kW h m−3 in SAARB effluent treatment. This study proved the feasibility of biologically treated landfill leachate treatment by the nFe3O3-O3 process.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3365
Author(s):  
Na Li ◽  
Yu Xia ◽  
Xuwen He ◽  
Weijia Li ◽  
Lianhua Yuan ◽  
...  

Biological processes have high removal efficiencies and low operational costs, but the secondary effluent of coking wastewater (CWW), even at a low concentration, is difficult for microorganisms to degrade directly. In this study, glucose was used as a carbon source and co-metabolic substrate for microbial acclimation in order to enhance the advanced treatment of coking wastewater (CWW). The removal performance of the pollutants, especially recalcitrant compounds, was studied and the changes in the microbial community structure after activated sludge acclimation were analyzed. The effect of glucose addition on the secondary biochemical effluent of coking wastewater (SBECW) treatment by the acclimated sludge was further studied by a comparison between the performance of two parallel reactors seeded with the acclimated sludge. Our results showed that the concentrations of chemical oxygen demand (COD), total organic carbon (TOC), and UV absorption at 254 nm (UV254) of the wastewater decreased in the acclimation process. Refractory organic matter, such as polycyclic aromatic hydrocarbons and nitrogen-containing heterocyclics, in the SBECW was effectively degraded by the acclimated sludge. High-throughput sequencing revealed that microbes with a strong ability to degrade recalcitrant compounds were enriched after acclimation, such as Thauera (8.91%), Pseudomonas (3.35%), and Blastocatella (10.76%). Seeded with the acclimated sludge, the reactor with the glucose addition showed higher COD removal efficiencies than the control system without glucose addition (p < 0.05). Collectively, glucose addition enhanced the advanced treatment of coking wastewater (CWW).


2021 ◽  
Author(s):  
Christine Peyrelasse ◽  
Matthieu Jacob ◽  
Audrey Lallement

Abstract The presence of micropollutants in the environment is today of major concern. These pollutants could have long-term impacts on the environment and on population health. Biological treatment of wastewater is generally insufficient to allow their complete elimination. The establishment of efficient treatments is then needed to degrade the refractory organic matter. Activated carbon adsorption, membrane filtration and oxidation processes are common suitable solutions. All of them have advantages and are effective to treat wastewaters but drawbacks are well known such as waste production, energy consumption or by-products formation. This study aims at defining a strategy to choose the best option according to the nature of the wastewater and the treatment objectives. A methodology was designed for the rating of theses processes to choose the best strategy regarding environmental, technical and economic criteria. A simulation of three wastewater treatment scenarios was carried out to compare the costs of ozonation, adsorption and reverse osmosis. According to the result obtained, a decision tree is proposed to define the best option for a tertiary treatment to reach reuse or discharge objectives.


Author(s):  
Rodrigo Poblete ◽  
Ernesto Cortés ◽  
Norma Pérez ◽  
Marcos Valdivia ◽  
Manuel I. Maldonado

Abstract The grape juice production generates an industrial wastewater that has a high concentration of organic matter and several polyphenols, such as ethanol. Therefore, the discharge of this wastewater can produce environmental problems. The aim of this work was to determine the optimal concentration of the reagents involved in a solar photo-Fenton process in the treatment of wastewater coming from juice. The process was analysed in a factorial design, as a function of H2O2 (900, 1000, 1100 mg/L) and Fe2+ (90, 100, 110 mg/L) concentration. The grape juice wastewater presents high organic content (20,500 mg/L COD and 5.4 mg/L polyphenols). Also, the presence of alcohols such ethanol, ethyl acetate and 2-metil-1-propanol was confirmed. The results showed that highest COD (>27%) and polyphenols removal (>36%) were obtained in experiments with 1100 mg H2O2/L and 100 mg Fe2+/L. In treatments with higher COD removal, 2-metil-1-propanol was detected as an intermediate of ethanol oxidation. These results proved that solar photo-Fenton is a suitable approach for treating the refractory organic matter from grape juice.


2021 ◽  
Vol 8 ◽  
Author(s):  
Federico Baltar ◽  
Xosé A. Alvarez-Salgado ◽  
Javier Arístegui ◽  
Ronald Benner ◽  
Dennis A. Hansell ◽  
...  

About 20% of the organic carbon produced in the sunlit surface ocean is transported into the ocean’s interior as dissolved, suspended and sinking particles to be mineralized and sequestered as dissolved inorganic carbon (DIC), sedimentary particulate organic carbon (POC) or “refractory” dissolved organic carbon (rDOC). Recently, the physical and biological mechanisms associated with the particle pumps have been revisited, suggesting that accepted fluxes might be severely underestimated (Boyd et al., 2019; Buesseler et al., 2020). Perhaps even more poorly understood are the mechanisms driving rDOC production and its potential accumulation in the ocean. On the basis of recent conflicting evidence about the relevance of DOC degradation in the deep ocean, we revisit the concept of rDOC in terms of its “refractory” nature in order to understand its role in the global carbon cycle. Here, we address the problem of various definitions and approaches used to characterize rDOC (such as turnover time in relation to the ocean transit time, molecule abundance, chemical composition and structure). We propose that rDOC should be operationally defined. However, we recognize there are multiple ways to operationally define rDOC; thus the main focus for unifying future studies should be to explicitly state how rDOC is being defined and the analytical window used for measuring rDOC, rather than adhering to a single operational definition. We also conclude, based on recent evidence, that the persistence of rDOC is fundamentally dependent on both intrinsic (chemical composition and structure, e.g., molecular properties), and extrinsic properties (amount or external factors, e.g., molecular concentrations, ecosystem properties). Finally, we suggest specific research questions aimed at stimulating research on the nature, dynamics, and role of rDOC in Carbon sequestration now and in future scenarios of climate change.


RSC Advances ◽  
2021 ◽  
Vol 11 (47) ◽  
pp. 29620-29631
Author(s):  
Yuansi Hu

A microwave radiation enhanced Fe-C/PS system was used to treat biologically-treated landfill leachate. This process showed wide applicability in treatment of four types of leachates and has a promising potential in landfill leachate treatment.


Science ◽  
2020 ◽  
Vol 367 (6483) ◽  
pp. eaaw7462 ◽  
Author(s):  
Olivier Poch ◽  
Istiqomah Istiqomah ◽  
Eric Quirico ◽  
Pierre Beck ◽  
Bernard Schmitt ◽  
...  

The measured nitrogen-to-carbon ratio in comets is lower than for the Sun, a discrepancy which could be alleviated if there is an unknown reservoir of nitrogen in comets. The nucleus of comet 67P/Churyumov-Gerasimenko exhibits an unidentified broad spectral reflectance feature around 3.2 micrometers, which is ubiquitous across its surface. On the basis of laboratory experiments, we attribute this absorption band to ammonium salts mixed with dust on the surface. The depth of the band indicates that semivolatile ammonium salts are a substantial reservoir of nitrogen in the comet, potentially dominating over refractory organic matter and more volatile species. Similar absorption features appear in the spectra of some asteroids, implying a compositional link between asteroids, comets, and the parent interstellar cloud.


Sign in / Sign up

Export Citation Format

Share Document