Application of oily sludge-derived char for lead and cadmium removal from aqueous solution

2020 ◽  
Vol 384 ◽  
pp. 123386 ◽  
Author(s):  
Yuan Tian ◽  
Jianbing Li ◽  
Todd W. Whitcombe ◽  
William B. McGill ◽  
Ron Thring
2014 ◽  
Vol 83 ◽  
pp. 415-422 ◽  
Author(s):  
Mohamed Raii ◽  
Doan Pham Minh ◽  
Francisco Javier Escudero Sanz ◽  
Ange Nzihou

2020 ◽  
Vol 1 (1) ◽  
pp. 20-27

Cloud Point Extraction (CPE) as an effective method for pre-concentration and separation of cadmium from aqueous solution is widely utilized. This study involves a surfactant mediated CPE procedure in order to remove cadmium from waste water using Polythiophene nanoparticle and Triton X- 100 as a non – ionic surfactant. Polythiophene – coated iron nanoparticles was successfully synthesized with novel method and as a super magnetic nano-particles (MNPs) for cadmium removal from aqueous solution was evaluated. Polythophene nano-particles emulsifying method have been synthesized and fabricated. Fabricated nano-particle was characterized by Fourier-transform infrared spectroscopy (FTIR), and analysed transmission electron microscopy (SEM). Effects of pH, buffer volume, extraction time, temperature, amount of nano-particle were essentially investigated. To reach in optimum conditions, related experiments were replicated and accomplished as well. For removal of cadmium by CPE approach the optimization conditions were gained at pH = 7 , volume of buffer acid 1.5 millilitre , electrolyte concentration (NaCl) of 10 -3 mole L-1 , Trinton concentration 5 %, cloud point temperature 80 0 C , extraction time 40 minutes, and 5 mg of modified polythiophene nano-particle. The calibration graph was liner with a correlation coefficient of 0. 9984 and represents appropriate liner correlation with an amount and concentration. The results revealed that 5 gram of modified nanoparticle can significantly increase the efficiency of cadmium removal.


Processes ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 406 ◽  
Author(s):  
Abdulaziz N. Amro ◽  
Mohammad K. Abhary ◽  
Muhammad Mansoor Shaikh ◽  
Samah Ali

In recent years, the interest in waste water treatment increased to preserve the environment. The objective of this study is the removal of lead and cadmium ions from aqueous solution by treated Phragmites biomass (TPB). TPB was characterized by using Fourier transform infrared spectroscopy (FTIR) and energy dispersive X-ray analysis (EDS) which indicates the presence of functional groups that may be responsible of metal adsorption such as hydroxyl, carbonyl, sulfonate and carboxylate. Characterization by scanning electron microscopy (SEM) and surface area analysis using the Brunauer–Emmett–Teller method (BET) illustrated that TPB is nonporous with a small surface area. The influences of various experimental factors were investigated; the proposed method recommended the extraction of Pb+2 and Cd+2 metal ions by TPB at pH 5.0. A contact time of 60 and 45 min was required for the adsorption 50 mL (50 ppm) Pb+2 and Cd+2 respectively to reach equilibrium when 0.10 g TPB was used. The optimum TPB dosage was 0.20 g for adsorption both metal ions when adsorbate solution was 50 mL (50 ppm). Particle sizes of 0.125–0.212 mm showed the best metal ion removal of both metal ions. Thermodynamic study illustrated that both metal ions correlate more with Langmuir isotherm. Furthermore, chemisorption of Pb+2 and Cd+2 on TPB was more likely according to kinetic study data.


2015 ◽  
Vol 43 (3) ◽  
pp. 277-281 ◽  
Author(s):  
M Rahman ◽  
S Gul ◽  
M Ajmal ◽  
A Iqbal ◽  
Akk Achakzai

Removal of cadmium from aqueous solution was studied by using Quetta pine (Pinus halepensis Mill.) leaves. Batch adsorption experiments were performed as a function of appropriate equilibrium time, pH, concentration of adsorbate and amount of adsorbent. The optimum pH required for maximum adsorption was found to be 7.0 and the maximum contact time for the equilibrium was 30 minutes at adsorbent dose of 10 g. The maximum adsorption efficiency of cadmium removal was 98.50%. The results were better fitted by Langmuir than Freundlich isotherm. The separation factor of equilibrium 0.12 and 0.67 showed that Quetta pine leaves are good adsorbent of cadmium from aqueous solution DOI: http://dx.doi.org/10.3329/bjb.v43i3.21598 Bangladesh J. Bot. 43(3): 277-281, 2014 (December)


2016 ◽  
Vol 57 (52) ◽  
pp. 25267-25277 ◽  
Author(s):  
Hao Guo ◽  
Hai Lin ◽  
Ying Li ◽  
Xinliang Li ◽  
Suping Feng ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document