Hydrogen Production by Methanol Steam Reforming Using Amorphous Metal Membranes

2007 ◽  
Vol 561-565 ◽  
pp. 1319-1322
Author(s):  
Shinichi Yamaura ◽  
Shigeyuki Uemiya ◽  
Hisamichi Kimura ◽  
Akihisa Inoue

In this work, we prepared the melt-spun (Ni0.6Nb0.4)70Zr30 amorphous alloy membrane and designed a catalytic reactor for methanol steam reforming combined with the amorphous membrane. Comparing the permeated gas with the evaporated gas, it was found that carbon dioxide (CO2) and carbon monoxide (CO) gases were removed from the permeated gas by using the amorphous membrane. Therefore, purified hydrogen gas was obtained in the reactor. We successfully produced pure hydrogen by using the amorphous membrane.

2008 ◽  
Vol 57 (10) ◽  
pp. 1031-1035 ◽  
Author(s):  
Shin-ichi YAMAURA ◽  
Hisamichi KIMURA ◽  
Akihisa INOUE ◽  
Yoichiro SHIMPO ◽  
Motonori NISHIDA ◽  
...  

2020 ◽  
Vol 395 ◽  
pp. 125109 ◽  
Author(s):  
Andrey M. Kovalskii ◽  
Andrei T. Matveev ◽  
Zakhar I. Popov ◽  
Ilia N. Volkov ◽  
Ekaterina V. Sukhanova ◽  
...  

Volume 2 ◽  
2004 ◽  
Author(s):  
Madhuri Jakkaraju ◽  
Vasudha Patri

I. C. Engines consume large amounts of fossil fuel emitting harmful pollutants like carbon monoxide (CO), unburnt hydrocarbons (UBHC), and oxides of nitrogen (NOx). By using a catalytic converter (CC), the carbon monoxide, hydrocarbon emissions can be transformed into less harmful carbon dioxide (CO2) & water vapor (H2O). Currently available CC’s are using costly noble metals like platinum (pt), palladium (pd), rhodium (rh) etc., hence making them expensive. This paper deals with the use of low-cost palletized silver coated alumina as the catalyst element in a CC. In this study, alumina and silver were used in the ratio of 10:1. All tests have been conducted on a stationary S.I. Engine at a constant speed of 1500 r.p.m with and without CC. Also, the performance of the palletized CC in combination with promoters like Bismuth, Cerium and Lanthanum was tested which have shown better results than silver alone as the coating element. It has been experimentally determined that the CO emissions have dropped from 7.25 (% vol) to 3.03(% vol) and the HC values have reduced from 350 ppm to 190 ppm.


2021 ◽  
Vol 1 (1) ◽  
pp. 14-22
Author(s):  
S.A. Plotnikov ◽  
◽  
Sh.V. Buzikov ◽  
I.S. Kozlov ◽  
◽  
...  

The use of rapeseed oil (RO) in tractor engines and other agricultural machinery in its pure form or a mixture of RO with diesel fuel (DF) imposes a number of limitations associated with some dif-ference in physical and chemical properties. Therefore, the most promising is the use of mixed fuel (MF) consisting of DF and RO. The purpose of these studies is to determine the optimal composi-tion of the MF, consisting of DF and RM by optimizing the approximated dependences of the envi-ronmental indicators of a diesel engine. To solve this problem, bench tests of the operation of the D-245.5S diesel engine (4ChN 11.0 / 12.5) were carried out. The following determined environmental performance indicators of a diesel engine are selected: soot (С), nitrogen oxides (NOx), unburned hydrocarbons (CxHy), carbon dioxide (CO2) and carbon monoxide (CO). The studies were carried out on various compositions of MF, consisting of 80% DF and 20% RO, 55% DF and 45% RO, 20% DF and 80% RO by weight, respectively. As a result of the bench tests, two load characteris-tics were obtained, the one at a speed of n = 1400 min-1 corresponding to the value of the maximum torque, and the second at a speed of n = 1800 min-1 corresponding to the value of the rated power, as well as the external speed characteristic of the D-245.5S tractor diesel engine (4ChN 11.0 / 12.5). The analysis of the obtained experimental data revealed the dependence of environmental indicators on the rotational speed of the diesel engine crankshaft, the average effective pressure and the addi-tion of RO in MF by weight. Using the least squares method, the approximated mathematical de-pendences of the ecological indicators of a diesel engine are determined. The analysis of the ob-tained dependencies showed that: the increase in the crankshaft speed n, the proportion of RO in MF and a decrease in the average effective pressure pe, leads to a decrease in soot С to 4.0%, nitro-gen oxides NOx to 100.0 ppm, unburned hydrocarbons CxHy to 1.0 ppm, carbon dioxide, CO2 up to 2%, and an increase in carbon monoxide CO up to 0.16%. As a result of solving the obtained system of equations for the approximated dependences of environmental indicators, the optimal addition of RO to MF of up to 35% by weight was determined.


Author(s):  
Lemnouer Chibane

Steam reforming of methanol over Cu/ZnO/Al2O3 catalyst was theoretically studied under created unsteady state. A mathematical approach was proposed to evaluate the effect of periodic inputs on reactor performance. The efficacy of the periodic separating reactor in term of pure hydrogen and of methanol conversion was measured during the reaction of methanol steam reforming. The obtained results showed that under certain operating conditions the periodic operation can be used advantageously to increase the reactor ability up to a level higher than the maximal steady-state. Moreover, our findings showed that the pumping of hydrogen through the membrane was stimulated by the effect of periodic operations. The predicted results suggested that the created unsteady state mode by using a square wave function could give the better performances compared to the sinusoidal mode. Copyright © 2018 BCREC Group. All rights reservedReceived: 15th July 2017; Revised: 26th November 2017; Accepted: 8th December 2017; Available online: 11st June 2018; Published regularly: 1st August 2018How to Cite: Chibane, L. (2018). Simulation Study of a Membrane Reactor for Ultrapure Hydrogen Recovery from Methanol Steam Reforming Reaction under Periodic Steady-State. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (2): 275-285 (doi:10.9767/bcrec.13.2.1340.275-285) 


2020 ◽  
Vol 14 (1) ◽  
pp. 6285-6294
Author(s):  
R. Arias Gilart ◽  
M. R. B. Ungaro ◽  
C. E. A. Rodríguez ◽  
J. F. F. Hernández ◽  
M. C. Sofia ◽  
...  

In this research, different magnetic treatments were applied to diesel fuel using static magnetic fields of 0.36T of magnetic induction. The magnetic conditioners (MCs) were installed in different positions of the fuel lines in the engine and the magnetic treatment of the diesel was also carried out before introducing it into the engine tanks. The study was conducted using a four-stroke, two-cylinder, Lister Petter (LPWS2) engine with a compression ratio of 23.5:1 and a constant engine speed of 1500 rpm. The emissions of carbon monoxide (CO), carbon dioxide (CO2), oxygen (O2), nitrogen oxides and the temperature of the exhaust gases and the mass consumption of fuel were measured. The highest levels of reduction were achieved with the magnetic treatments that locate the MC directly in the engine's pipes. As the number of MC in the engine pipes increases, the emissions of polluting gases decrease. With the treatment that locates one MC in front of each injector, two MC at the entrance of the filter and two MC in the return of fuel were able to increase the O2 emissions by 6.9% and decrease the CO emissions in about 21.3% in the last load of the generator set. With this treatment a decrease in fuel consumption of 4.89% to 80% of engine load was obtained.


Sign in / Sign up

Export Citation Format

Share Document