In situ growth of photocatalytic Ag-decorated β-Bi2O3/Bi2O2.7 heterostructure film on PVC polymer matrices with self-cleaning and antibacterial properties

2021 ◽  
pp. 131058
Author(s):  
Xuelei Xu ◽  
Yi Wang ◽  
Dun Zhang ◽  
Jin Wang ◽  
Zhanxu Yang
Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2574
Author(s):  
Maria Antonia Tănase ◽  
Andreia Cristina Soare ◽  
Petruţa Oancea ◽  
Adina Răducan ◽  
Cătălin Ionuţ Mihăescu ◽  
...  

ZnO nanoparticle-based multifunctional coatings were prepared by a simple, time-saving microwave method. Arginine and ammonia were used as precipitation agents, and zinc acetate dehydrate was used as a zinc precursor. Under the optimized conditions, flower-like morphologies of ZnO aggregates were obtained. The prepared nanopowders were characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and UV/Visible spectroscopy. The developed in situ synthesis with microwave irradiation enabled significant ZnO nanoparticle deposition on cotton fabrics, without additional steps. The functionalized textiles were tested as a photocatalyst in methylene blue (MB) photodegradation and showed good self-cleaning and UV-blocking properties. The coated cotton fabrics exhibited good antibacterial properties against common microbial trains (Staphylococcus aureus, Escherichia coli, and Candida albicans), together with self-cleaning and photocatalytic efficiency in organic dye degradation. The proposed microwave-assisted in situ synthesis of ZnO nanocoatings on textiles shows high potential as a rapid, efficient, environmentally friendly, and scalable method to fabricate functional fabrics.


2008 ◽  
Vol 29 (24) ◽  
pp. 1926-1931 ◽  
Author(s):  
Christopher M. Aberg ◽  
Mohamed A. Seyam ◽  
Scott A. Lassell ◽  
Lyudmila M. Bronstein ◽  
Richard J. Spontak

Author(s):  
Yoshichika Bando ◽  
Takahito Terashima ◽  
Kenji Iijima ◽  
Kazunuki Yamamoto ◽  
Kazuto Hirata ◽  
...  

The high quality thin films of high-Tc superconducting oxide are necessary for elucidating the superconducting mechanism and for device application. The recent trend in the preparation of high-Tc films has been toward “in-situ” growth of the superconducting phase at relatively low temperatures. The purpose of “in-situ” growth is to attain surface smoothness suitable for fabricating film devices but also to obtain high quality film. We present the investigation on the initial growth manner of YBCO by in-situ reflective high energy electron diffraction (RHEED) technique and on the structural and superconducting properties of the resulting ultrathin films below 100Å. The epitaxial films have been grown on (100) plane of MgO and SrTiO, heated below 650°C by activated reactive evaporation. The in-situ RHEED observation and the intensity measurement was carried out during deposition of YBCO on the substrate at 650°C. The deposition rate was 0.8Å/s. Fig. 1 shows the RHEED patterns at every stage of deposition of YBCO on MgO(100). All the patterns exhibit the sharp streaks, indicating that the film surface is atomically smooth and the growth manner is layer-by-layer.


Sign in / Sign up

Export Citation Format

Share Document