scholarly journals Co-cultivation of a novel Fusarium striatum strain and a xylose consuming Saccharomyces cerevisiae yields an efficient process for simultaneous detoxification and fermentation of lignocellulosic hydrolysates

2021 ◽  
pp. 131575
Author(s):  
Alberto Millán Acosta ◽  
Diana Cosovanu ◽  
Pau Cabañeros López ◽  
Sune Tjalfe Thomsen ◽  
Krist V. Gernaey ◽  
...  
Author(s):  
Jian Zha ◽  
Miaomiao Yuwen ◽  
Weidong Qian ◽  
Xia Wu

Xylose is the second most abundant sugar in lignocellulosic hydrolysates. Transformation of xylose into valuable chemicals, such as plant natural products, is a feasible and sustainable route to industrializing biorefinery of biomass materials. Yeast strains, including Saccharomyces cerevisiae, Scheffersomyces stipitis, and Yarrowia lipolytica, display some paramount advantages in expressing heterologous enzymes and pathways from various sources and have been engineered extensively to produce natural products. In this review, we summarize the advances in the development of metabolically engineered yeasts to produce natural products from xylose, including aromatics, terpenoids, and flavonoids. The state-of-the-art metabolic engineering strategies and representative examples are reviewed. Future challenges and perspectives are also discussed on yeast engineering for commercial production of natural products using xylose as feedstocks.


2019 ◽  
Vol 57 (1) ◽  
pp. 5-16 ◽  
Author(s):  
Anamarija Štafa ◽  
Andrea Pranklin ◽  
Ivan Krešimir Svetec ◽  
Božidar Šantek ◽  
Marina Svetec Miklenić ◽  
...  

Bioethanol production from lignocellulosic hydrolysates requires a producer strain that tolerates both the presence of growth and fermentation inhibitors and high ethanol concentrations. Therefore, we constructed heterozygous intraspecies hybrid diploids of Saccharomyces cerevisiae by crossing two natural S. cerevisiae isolates, YIIc17_E5 and UWOPS87-2421, a good ethanol producer found in wine and a strain from the flower of the cactus Opuntia megacantha resistant to inhibitors found in lignocellulosic hydrolysates, respectively. Hybrids grew faster than parental strains in the absence and in the presence of acetic and levulinic acids and 2-furaldehyde, inhibitors frequently found in lignocellulosic hydrolysates, and the overexpression of YAP1 gene increased their survival. Furthermore, although originating from the same parental strains, hybrids displayed different fermentative potential in a CO2 production test, suggesting genetic variability that could be used for further selection of desirable traits. Therefore, our results suggest that the construction of intraspecies hybrids coupled with the use of genetic engineering techniques is a promising approach for improvement or development of new biotechnologically relevant strains of S. cerevisiae. Moreover, it was found that the success of gene targeting (gene targeting fidelity) in natural S. cerevisiae isolates (YIIc17_E5α and UWOPS87-2421α) was strikingly lower than in laboratory strains and the most frequent off-targeting event was targeted chromosome duplication.


2008 ◽  
Vol 136 ◽  
pp. S396
Author(s):  
Hongmei Liu ◽  
Ming Yan ◽  
Cangang Lai ◽  
Lin Xu ◽  
Pingkai Ouyang

2009 ◽  
Vol 76 (1) ◽  
pp. 190-195 ◽  
Author(s):  
Víctor Guadalupe Medina ◽  
Marinka J. H. Almering ◽  
Antonius J. A. van Maris ◽  
Jack T. Pronk

ABSTRACT In anaerobic cultures of wild-type Saccharomyces cerevisiae, glycerol production is essential to reoxidize NADH produced in biosynthetic processes. Consequently, glycerol is a major by-product during anaerobic production of ethanol by S. cerevisiae, the single largest fermentation process in industrial biotechnology. The present study investigates the possibility of completely eliminating glycerol production by engineering S. cerevisiae such that it can reoxidize NADH by the reduction of acetic acid to ethanol via NADH-dependent reactions. Acetic acid is available at significant amounts in lignocellulosic hydrolysates of agricultural residues. Consistent with earlier studies, deletion of the two genes encoding NAD-dependent glycerol-3-phosphate dehydrogenase (GPD1 and GPD2) led to elimination of glycerol production and an inability to grow anaerobically. However, when the E. coli mhpF gene, encoding the acetylating NAD-dependent acetaldehyde dehydrogenase (EC 1.2.1.10; acetaldehyde + NAD+ + coenzyme A ↔ acetyl coenzyme A + NADH + H+), was expressed in the gpd1Δ gpd2Δ strain, anaerobic growth was restored by supplementation with 2.0 g liter−1 acetic acid. The stoichiometry of acetate consumption and growth was consistent with the complete replacement of glycerol formation by acetate reduction to ethanol as the mechanism for NADH reoxidation. This study provides a proof of principle for the potential of this metabolic engineering strategy to improve ethanol yields, eliminate glycerol production, and partially convert acetate, which is a well-known inhibitor of yeast performance in lignocellulosic hydrolysates, to ethanol. Further research should address the kinetic aspects of acetate reduction and the effect of the elimination of glycerol production on cellular robustness (e.g., osmotolerance).


2013 ◽  
Vol 448-453 ◽  
pp. 1581-1586 ◽  
Author(s):  
Shao Hua Luo ◽  
Yong Wen Huang ◽  
An Chen ◽  
Jia Ling Wang

In order to find the strains which can produce high ethanol yield as well as tolerate inhibitors on the lignocellulosic hydrolysates for developing the renewable bioenergy, the sepecial yeast must be explored. After acclimatizing 23 days and using five different acclimation media with sequential increase in the concentration of inhibitory compounds , a kind ofsaccharomyces cerevisiaestrain resistant to inhibitors was obtained . When the yeast resistant to drug and the parent strain grew in the same media which contained several inhibitory compounds 3.2 g/L acetic acid , 0.8 g/L furfural , 0.4 g/L formic acid , the new yeasts maximal ethanol yield can reach 0.428 g/g , up to 85.6% of theoretical ethanol yield. Compared with drug resistant yeast , the parent strains maximal ethanol production yield only can reach 0.246 g/g , up to 52.8% of theoretical ethanol yield . After 5 continuous ages , the average ability of producing ethanol was stable. Compared with parent strain, the yeast resistant to drug had good ability to ferment glucose and produce ethanol as well as tolerate inhibitors .The new yeast has extensive application prospect in the bioethanol production.


2001 ◽  
Vol 36 (2) ◽  
pp. 196-201 ◽  
Author(s):  
F. Seibold ◽  
O. Stich ◽  
R. Hufnagl ◽  
S. Kamil ◽  
M. Scheurlen

Sign in / Sign up

Export Citation Format

Share Document