A new filamentous bulking control strategy: The role of N-acyl homoserine lactone (AHL)-mediated quorum sensing in filamentous bacteria proliferation within activated sludge

2022 ◽  
Vol 428 ◽  
pp. 132097
Author(s):  
Hong-Xin Shi ◽  
Xu Wang ◽  
Jin-Song Guo ◽  
Fang Fang ◽  
You-Peng Chen ◽  
...  
RSC Advances ◽  
2016 ◽  
Vol 6 (14) ◽  
pp. 11128-11139 ◽  
Author(s):  
Huizhi Hu ◽  
Junguo He ◽  
Jian Liu ◽  
Huarong Yu ◽  
Jian Tang ◽  
...  

Quorum sensing (QS) signaling has been extensively studied in granules and single species populations.


2009 ◽  
Vol 22 (12) ◽  
pp. 1514-1522 ◽  
Author(s):  
Grazia Licciardello ◽  
Iris Bertani ◽  
Laura Steindler ◽  
Patrizia Bella ◽  
Vittorio Venturi ◽  
...  

The gram-negative phytopathogen Pseudomonas corrugata has an acyl-homoserine lactone (AHL) quorum-sensing (QS) system called PcoI/PcoR that is involved in virulence on tomato. This work identifies, downstream of pcoI, a gene designated rfiA, which we demonstrate is directly linked to QS by cotranscription with pcoI. The deduced RfiA protein contains a DNA-binding domain characteristic of the LuxR family but lacks the autoinducer-binding terminus characteristic of the QS LuxR-family proteins. We also identified, downstream of rfiA, an operon designated pcoABC, encoding for the three components of a tripartite resistance nodulation-cell-division (RND) transporter system. The expression of pcoABC is regulated by RfiA. We found that lipodepsipeptide (LDP) production is cell density dependent and mutants of pcoI, pcoR, and rfiA are unable to inhibit the growth of the LDP-sensitive microorganisms Rhodotorula pilimanae and Bacillus megaterium. P. corrugata rfiA mutants were significantly reduced in their ability to cause necrosis development in tomato pith. In addition, it was established that PcoR in the absence of AHL also played a role in virulence on tomato. A model for the role of PcoI, PcoR, and RfiA in tomato pith necrosis is presented.


2006 ◽  
Vol 188 (9) ◽  
pp. 3365-3370 ◽  
Author(s):  
Yannick Lequette ◽  
Joon-Hee Lee ◽  
Fouzia Ledgham ◽  
Andrée Lazdunski ◽  
E. Peter Greenberg

ABSTRACT The opportunistic pathogen Pseudomonas aeruginosa possesses two complete acyl-homoserine lactone (acyl-HSL) signaling systems. One system consists of LasI and LasR, which generate a 3-oxododecanoyl-homoserine lactone signal and respond to that signal, respectively. The other system is RhlI and RhlR, which generate butanoyl-homoserine lactone and respond to butanoyl-homoserine lactone, respectively. These quorum-sensing systems control hundreds of genes. There is also an orphan LasR-RhlR homolog, QscR, for which there is no cognate acyl-HSL synthetic enzyme. We previously reported that a qscR mutant is hypervirulent and showed that QscR transiently represses a few quorum-sensing-controlled genes. To better understand the role of QscR in P. aeruginosa gene regulation and to better understand the relationship between QscR, LasR, and RhlR control of gene expression, we used transcription profiling to identify a QscR-dependent regulon. Our analysis revealed that QscR activates some genes and represses others. Some of the repressed genes are not regulated by the LasR-I or RhlR-I systems, while others are. The LasI-generated 3-oxododecanoyl-homoserine lactone serves as a signal molecule for QscR. Thus, QscR appears to be an integral component of the P. aeruginosa quorum-sensing circuitry. QscR uses the LasI-generated acyl-homoserine lactone signal and controls a specific regulon that overlaps with the already overlapping LasR- and RhlR-dependent regulons.


Chemosphere ◽  
2021 ◽  
Vol 274 ◽  
pp. 129970
Author(s):  
Na Wang ◽  
Jie Gao ◽  
Ying Liu ◽  
Qiuying Wang ◽  
Xuliang Zhuang ◽  
...  

2014 ◽  
Vol 26 (8) ◽  
pp. 1615-1621 ◽  
Author(s):  
Yaochen Li ◽  
Junping Lv ◽  
Chen Zhong ◽  
Wen Hao ◽  
Yaqin Wang ◽  
...  

2013 ◽  
Vol 81 (5) ◽  
pp. 1471-1478 ◽  
Author(s):  
Charlotte Majerczyk ◽  
Loren Kinman ◽  
Tony Han ◽  
Richard Bunt ◽  
E. Peter Greenberg

ABSTRACTManyProteobacteriause acyl-homoserine lactone-mediated quorum-sensing (QS) to activate specific sets of genes as a function of cell density. QS often controls the virulence of pathogenic species, and in fact a previous study indicated that QS was important forBurkholderia malleimouse lung infections. To gain in-depth information on the role of QS inB. malleivirulence, we constructed and characterized a mutant ofB. malleistrain GB8 that was unable to make acyl-homoserine lactones. The QS mutant showed virulence equal to that of its wild-type parent in an aerosol mouse infection model, and growth in macrophages was indistinguishable from that of the parent strain. Furthermore, we assessed the role of QS inB. malleiATCC 23344 by constructing and characterizing a mutant strain producing AiiA, a lactonase enzyme that degrades acyl-homoserine lactones. Although acyl-homoserine lactone levels in cultures of this strain are very low, it showed full virulence. Contrary to the previous report, we conclude that QS is not required for acuteB. malleiinfections of mice. QS may be involved in some stage of chronic infections in the natural host of horses, or the QS genes may be remnants of the QS network inB. pseudomalleifrom which this host-adapted pathogen evolved.


2016 ◽  
Vol 4 (4) ◽  
Author(s):  
Akhilandeswarre Dharmaprakash ◽  
Dinesh Reghunathan ◽  
Krishnakutty C. Sivakumar ◽  
Manoj Prasannakumar ◽  
Sabu Thomas

We report for the first time the draft genome sequence of two psychrotrophic Pseudomonas species, Pseudomonas simiae RGCB 73 and Pseudomonas brenneri RGCB 108, from the Arctic that produce more than one acyl homoserine lactone molecule of varied N -acyl length. The study confirms the presence of a LuxR-LuxI (type) mediated quorum-sensing system in both the Pseudomonas species and enables us to understand the role of quorum sensing in their survival in extremely cold environments.


Sign in / Sign up

Export Citation Format

Share Document