A Low-Surface-Energy Design to Allogeneic Sulfide Heterostructures Anchored on Ultrathin Graphene Sheets for Fast Sodium Storage

2021 ◽  
pp. 134195
Author(s):  
Yang Yan ◽  
Pei-Quan Li ◽  
Zhen-Yi Gu ◽  
Wen Liu ◽  
Jun-Ming Cao ◽  
...  
2003 ◽  
Vol 774 ◽  
Author(s):  
Janice L. McKenzie ◽  
Michael C. Waid ◽  
Riyi Shi ◽  
Thomas J. Webster

AbstractSince the cytocompatibility of carbon nanofibers with respect to neural applications remains largely uninvestigated, the objective of the present in vitro study was to determine cytocompatibility properties of formulations containing carbon nanofibers. Carbon fiber substrates were prepared from four different types of carbon fibers, two with nanoscale diameters (nanophase, or less than or equal to 100 nm) and two with conventional diameters (or greater than 200 nm). Within these two categories, both a high and a low surface energy fiber were investigated and tested. Astrocytes (glial scar tissue-forming cells) and pheochromocytoma cells (PC-12; neuronal-like cells) were seeded separately onto the substrates. Results provided the first evidence that astrocytes preferentially adhered on the carbon fiber that had the largest diameter and the lowest surface energy. PC-12 cells exhibited the most neurites on the carbon fiber with nanodimensions and low surface energy. These results may indicate that PC-12 cells prefer nanoscale carbon fibers while astrocytes prefer conventional scale fibers. A composite was formed from poly-carbonate urethane and the 60 nm carbon fiber. Composite substrates were thus formed using different weight percentages of this fiber in the polymer matrix. Increased astrocyte adherence and PC-12 neurite density corresponded to decreasing amounts of the carbon nanofibers in the poly-carbonate urethane matrices. Controlling carbon fiber diameter may be an approach for increasing implant contact with neurons and decreasing scar tissue formation.


Polymer ◽  
2021 ◽  
Vol 217 ◽  
pp. 123481
Author(s):  
Zhanhui Gan ◽  
Deyu Kong ◽  
Qianqian Yu ◽  
Yifan Jia ◽  
Xue-Hui Dong ◽  
...  

AIP Advances ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 035219
Author(s):  
Ya-Kun Lyu ◽  
Zuo-Tao Ji ◽  
Tao He ◽  
Zhenda Lu ◽  
Weihua Zhang

2004 ◽  
Vol 37 (2) ◽  
pp. 408-413 ◽  
Author(s):  
L. van Ravenstein ◽  
W. Ming ◽  
R. D. van de Grampel ◽  
R. van der Linde ◽  
G. de With ◽  
...  

Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 979 ◽  
Author(s):  
Chunfang Zhu ◽  
Haitao Yang ◽  
Hongbo Liang ◽  
Zhengyue Wang ◽  
Jun Dong ◽  
...  

Low surface energy materials have attracted much attention due to their properties and various applications. In this work, we synthesized and characterized a series of ultraviolet (UV)-curable fluorinated siloxane polymers with various fluorinated acrylates—hexafluorobutyl acrylate, dodecafluoroheptyl acrylate, and trifluorooctyl methacrylate—grafted onto a hydrogen-containing poly(dimethylsiloxane) backbone. The structures of the fluorinated siloxane polymers were measured and confirmed by proton nuclear magnetic resonance and Fourier transform infrared spectroscopy. Then the polymers were used as surface modifiers of UV-curable commercial polyurethane (DR-U356) at different concentrations (1, 2, 3, 4, 5, and 10 wt %). Among three formulations of these fluorinated siloxane polymers modified with DR-U356, hydrophobic states (91°, 92°, and 98°) were obtained at low concentrations (1 wt %). The DR-U356 resin is only in the hydrophilic state at 59.41°. The fluorine and siloxane element contents were investigated by X-ray photoelectron spectroscopy and the results indicated that the fluorinated and siloxane elements were liable to migrate to the surface of resins. The results of the friction recovering assays showed that the recorded contact angles of the series of fluorinated siloxane resins were higher than the original values after the friction-annealing progressing.


2015 ◽  
Vol 3 (38) ◽  
pp. 19299-19303 ◽  
Author(s):  
Ruixia Yuan ◽  
Huaiyuan Wang ◽  
Tuo Ji ◽  
Liwen Mu ◽  
Long Chen ◽  
...  

A novel micelle-mediated phase transfer method is developed to synthesize hollow polyaniline spheres with mesoporous brain-like convex-fold shell textures. High superhydrophobicity is achieved due to the highly ordered porous structures and low surface energy provided by perfluorooctanoic acid.


2017 ◽  
Vol 58 (6) ◽  
pp. 973-979 ◽  
Author(s):  
Kongying Zhu ◽  
Xiaohui Li ◽  
Junfeng Su ◽  
Hui Li ◽  
Yunhui Zhao ◽  
...  

2021 ◽  
Vol 21 (8) ◽  
pp. 4418-4422
Author(s):  
Seongwan Kim ◽  
Yunsook Yang ◽  
Sheik Abdur Rahman ◽  
Woo Young Kim

Ag-paste is used as an electrode material in various fields as a manufacturing advantage that enables solution processing. However, when a subsequent thin film is formed on the solidified Ag-paste electrode, there is a fear that the bonding force between the Ag-paste electrode and the subsequent thin film is weakened and peeled off due to the low surface energy of the Agpaste electrode. It is necessary to increase the surface energy of the Ag-paste electrode surface since it ultimately directly affects the yield of the device or product. In this study, the UV/ozone treatment process was introduced to increase the Ag-paste surface energy, thereby making the surface hydrophilic. Additionally, it was confirmed that the UV/ozone treatment process affected only the surface of the Ag-paste electrode by extracting the contact resistance.


Sign in / Sign up

Export Citation Format

Share Document