scholarly journals Intramolecular quality control: HIV-1 envelope gp160 signal-peptide cleavage as a functional folding checkpoint

Cell Reports ◽  
2021 ◽  
Vol 36 (9) ◽  
pp. 109646
Author(s):  
Nicholas McCaul ◽  
Matthias Quandte ◽  
Ilja Bontjer ◽  
Guus van Zadelhoff ◽  
Aafke Land ◽  
...  
eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Erik Lee Snapp ◽  
Nicholas McCaul ◽  
Matthias Quandte ◽  
Zuzana Cabartova ◽  
Ilja Bontjer ◽  
...  

Like all other secretory proteins, the HIV-1 envelope glycoprotein gp160 is targeted to the endoplasmic reticulum (ER) by its signal peptide during synthesis. Proper gp160 folding in the ER requires core glycosylation, disulfide-bond formation and proline isomerization. Signal-peptide cleavage occurs only late after gp160 chain termination and is dependent on folding of the soluble subunit gp120 to a near-native conformation. We here detail the mechanism by which co-translational signal-peptide cleavage is prevented. Conserved residues from the signal peptide and residues downstream of the canonical cleavage site form an extended alpha-helix in the ER membrane, which covers the cleavage site, thus preventing cleavage. A point mutation in the signal peptide breaks the alpha helix allowing co-translational cleavage. We demonstrate that postponed cleavage of gp160 enhances functional folding of the molecule. The change to early cleavage results in decreased viral fitness compared to wild-type HIV.


2020 ◽  
Author(s):  
Nicholas McCaul ◽  
Matthias Quandte ◽  
Ilja Bontjer ◽  
Guus van Zadelhoff ◽  
Aafke Land ◽  
...  

SummaryRemoval of the membrane-tethering signal peptides that target secretory proteins to the endoplasmic reticulum is a prerequisite for proper folding. While generally thought to be removed well before translation termination, we here report two novel post-targeting functions for the HIV-1 gp120 signal peptide, which remains attached until gp120 folding triggers its removal. First, the signal peptide improves fidelity of folding by enhancing conformational plasticity of gp120 by driving disulfide isomerization through a redox-active cysteine, at the same time delaying folding by tethering the N-terminus to the membrane, which needs assembly with the C-terminus. Second, its carefully timed cleavage represents intramolecular quality control and ensures release and stabilization of (only) natively folded gp120. Postponed cleavage and the redox-active cysteine both are highly conserved and important for viral fitness. Considering the ∼15% secretory proteins in our genome and the frequency of N-to-C contacts in protein structures, these regulatory roles of the signal peptide are bound to be more common in secretory-protein biosynthesis.


1994 ◽  
Vol 89 (428) ◽  
pp. 1200-1208 ◽  
Author(s):  
R. C. Gentleman ◽  
M. S. Hamada ◽  
D. E. Matthews ◽  
A. R. Wilson

2017 ◽  
Vol 233 (2) ◽  
pp. 748-758 ◽  
Author(s):  
Farzaneh G. Tahrir ◽  
Santhanam Shanmughapriya ◽  
Taha Mohseni Ahooyi ◽  
Tijana Knezevic ◽  
Manish K. Gupta ◽  
...  

2021 ◽  
Author(s):  
A. Manuel Liaci ◽  
Barbara Steigenberger ◽  
Sem Tamara ◽  
Paulo Cesar Telles de Souza ◽  
Mariska Gröllers-Mulderij ◽  
...  

Biomolecules ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 413 ◽  
Author(s):  
Doungdean Tummanatsakun ◽  
Tanakorn Proungvitaya ◽  
Sittiruk Roytrakul ◽  
Temduang Limpaiboon ◽  
Sopit Wongkham ◽  
...  

Diagnostic and/or prognostic biomarkers for cholangiocarcinoma (CCA) are still insufficient with poor prognosis of patients. To discover a new CCA biomarker, we constructed our secretome database of three CCA cell lines and one control cholangiocyte cell line using GeLC-MS/MS. We selected candidate proteins by five bioinformatics tools for secretome analysis. The inclusion criteria were as follows: having predicted signal peptide or being predicted as non-classically secreted protein; together with having no transmembrane helix and being previously detected in plasma and having the highest number of signal peptide cleavage sites. Eventually, apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1) was selected for further analysis. To validate APEX1 as a bio-marker for CCA, serum APEX1 levels of 80, 39, and 40 samples collected from CCA, benign biliary diseases (BBD), and healthy control groups, respectively, were measured using dot blot analysis. The results showed that serum APEX1 level in CCA group was significantly higher than that in BBD or healthy control group. Among CCA patients, serum APEX1 level was significantly higher in patients having metastasis than in those without metastasis. The higher level of serum APEX1 was correlated with the shorter survival time of the patients. Serum APEX1 level might be a diagnostic and prognostic biomarker for CCA.


2012 ◽  
Vol 205 (12) ◽  
pp. 1797-1805 ◽  
Author(s):  
Aimee M. Merino ◽  
Wei Song ◽  
Dongning He ◽  
Joseph Mulenga ◽  
Susan Allen ◽  
...  

2020 ◽  
Vol 94 (21) ◽  
Author(s):  
Marc C. Johnson ◽  
Terri D. Lyddon ◽  
Reinier Suarez ◽  
Braxton Salcedo ◽  
Mary LePique ◽  
...  

ABSTRACT The severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) Spike glycoprotein is solely responsible for binding to the host cell receptor and facilitating fusion between the viral and host membranes. The ability to generate viral particles pseudotyped with SARS-COV-2 Spike is useful for many types of studies, such as characterization of neutralizing antibodies or development of fusion-inhibiting small molecules. Here, we characterized the use of a codon-optimized SARS-COV-2 Spike glycoprotein for the generation of pseudotyped HIV-1, murine leukemia virus (MLV), and vesicular stomatitis virus (VSV) particles. The full-length Spike protein functioned inefficiently with all three systems but was enhanced over 10-fold by deleting the last 19 amino acids of the cytoplasmic tail. Infection of 293FT target cells was possible only if the cells were engineered to stably express the human angiotensin-converting enzyme 2 (ACE2) receptor, but stably introducing an additional copy of this receptor did not further enhance susceptibility. Stable introduction of the Spike-activating protease TMPRSS2 further enhanced susceptibility to infection by 5- to 10-fold. Replacement of the signal peptide of the Spike protein with an optimal signal peptide did not enhance or reduce infectious particle production. However, modifications D614G and R682Q further enhanced infectious particle production. With all enhancing elements combined, the titer of pseudotyped HIV-1 particles reached almost 106 infectious particles/ml. Finally, HIV-1 particles pseudotyped with SARS-COV-2 Spike were successfully used to detect neutralizing antibodies in plasma from coronavirus disease 2019 (COVID-19) patients, but not in plasma from uninfected individuals. IMPORTANCE In work with pathogenic viruses, it is useful to have rapid quantitative tests for viral infectivity that can be performed without strict biocontainment restrictions. A common way of accomplishing this is to generate viral pseudoparticles that contain the surface glycoprotein from the pathogenic virus incorporated into a replication-defective viral particle that contains a sensitive reporter system. These pseudoparticles enter cells using the glycoprotein from the pathogenic virus, leading to a readout for infection. Conditions that block entry of the pathogenic virus, such as neutralizing antibodies, will also block entry of the viral pseudoparticles. However, viral glycoproteins often are not readily suited for generating pseudoparticles. Here, we describe a series of modifications that result in the production of relatively high-titer SARS-COV-2 pseudoparticles that are suitable for the detection of neutralizing antibodies from COVID-19 patients.


1998 ◽  
Vol 277 (4) ◽  
pp. 859-870 ◽  
Author(s):  
Andrew L Karamyshev ◽  
Zemphyra N Karamysheva ◽  
Andrey V Kajava ◽  
Vladimir N Ksenzenko ◽  
Marina A Nesmeyanova

Sign in / Sign up

Export Citation Format

Share Document