scholarly journals Single-cell secretion analysis reveals a dual role for IL-10 in restraining and resolving the TLR4-induced inflammatory response

Cell Reports ◽  
2021 ◽  
Vol 36 (12) ◽  
pp. 109728
Author(s):  
Amanda F. Alexander ◽  
Ilana Kelsey ◽  
Hannah Forbes ◽  
Kathryn Miller-Jensen
2020 ◽  
Author(s):  
Amanda F. Alexander ◽  
Hannah Forbes ◽  
Kathryn Miller-Jensen

AbstractFollowing TLR4 stimulation of macrophages, negative feedback mediated by the anti-inflammatory cytokine IL-10 limits the inflammatory response. However, extensive cell-to-cell variability in TLR4-stimulated cytokine secretion raises questions about how negative feedback is robustly implemented. To explore this, we characterized the TLR4-stimulated secretion program in primary murine macrophages using a single-cell microwell assay that enabled evaluation of functional autocrine IL-10 signaling. High-dimensional analysis of single-cell data revealed three distinct tiers of TLR4-induced proinflammatory activation based on levels of cytokine secretion. Surprisingly, while IL-10 inhibits TLR4-induced activation in the highest tier, it also contributes to the TLR4-induced activation threshold by regulating which cells transition from non-secreting to secreting states. This role for IL-10 in restraining TLR4 inflammatory activation is largely mediated by intermediate IFN-β signaling, while TNF-a likely mediates response resolution by IL-10. Thus, cell-to-cell variability in cytokine regulatory motifs provides a means to tailor the TLR4-induced inflammatory response.


Nanophotonics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1081-1086 ◽  
Author(s):  
Abdoulaye Ndao ◽  
Liyi Hsu ◽  
Wei Cai ◽  
Jeongho Ha ◽  
Junhee Park ◽  
...  

AbstractOne of the key challenges in biology is to understand how individual cells process information and respond to perturbations. However, most of the existing single-cell analysis methods can only provide a glimpse of cell properties at specific time points and are unable to provide cell secretion and protein analysis at single-cell resolution. To address the limits of existing methods and to accelerate discoveries from single-cell studies, we propose and experimentally demonstrate a new sensor based on bound states in the continuum to quantify exosome secretion from a single cell. Our optical sensors demonstrate high-sensitivity refractive index detection. Because of the strong overlap between the medium supporting the mode and the analytes, such an optical cavity has a figure of merit of 677 and sensitivity of 440 nm/RIU. Such results facilitate technological progress for highly conducive optical sensors for different biomedical applications.


2018 ◽  
Vol 115 (52) ◽  
pp. 13204-13209 ◽  
Author(s):  
José Juan-Colás ◽  
Ian S. Hitchcock ◽  
Mark Coles ◽  
Steven Johnson ◽  
Thomas F. Krauss

Cell communication is primarily regulated by secreted proteins, whose inhomogeneous secretion often indicates physiological disorder. Parallel monitoring of innate protein-secretion kinetics from individual cells is thus crucial to unravel systemic malfunctions. Here, we report a label-free, high-throughput method for parallel, in vitro, and real-time analysis of specific single-cell signaling using hyperspectral photonic crystal resonant technology. Heterogeneity in physiological thrombopoietin expression from individual HepG2 liver cells in response to platelet desialylation was quantified demonstrating how mapping real-time protein secretion can provide a simple, yet powerful approach for studying complex physiological systems regulating protein production at single-cell resolution.


1998 ◽  
Vol 839 (1 TRENDS IN COM) ◽  
pp. 546-548 ◽  
Author(s):  
JACCO R. LIESTE ◽  
WIM J.J.M. SCHEENEN ◽  
BRUCE G. JENKS ◽  
ERIC W. ROUBOS
Keyword(s):  

2021 ◽  
Author(s):  
Takahiro Suzuki ◽  
Takeru Abe ◽  
Mika Ikegaya ◽  
Kaori Suzuki ◽  
Haruka Yabukami ◽  
...  

In vitro functional sperm production is important for understanding spermatogenesis and for the treatment of male infertility. Here, we describe similarities and differences between testis tissues in vivo and in vitro and clarify abnormalities in the early stage of in vitro spermatogenesis at single-cell resolution. While in vitro spermatogenesis progressed similarly to in vivo spermatogenesis until the early pachytene spermatocyte stage, a noticeable acute inflammatory response occurred in immune cells and non-immune testicular somatic cells immediately after cultivation. Inhibitor treatment revealed that NLRP3 inflammasome signaling is key to the inflammation. We observed damaged/dead germ cell accumulation in cultured testis, which may be due to dysfunctional phagocytosis by Sertoli cells. Our data revealed abnormal testicular milieu of in vitro cultured testes caused by tissue-wide sterile inflammation, in which the danger-associated molecular pattern-NLRP3 inflammasome axis may be a key element.


2021 ◽  
Author(s):  
Meimei Liu ◽  
Yahui Ji ◽  
Fengjiao Zhu ◽  
Xue Bai ◽  
Linmei Li ◽  
...  

AbstractDespite advances in single-cell secretion analysis technologies, lacking simple methods to reliably keep the live single-cells traceable for longitudinal detection poses a significant obstacle. Here we developed the high-density NOMA (narrow-opening microwell array) microchip that realized the retention of ≥97% of trapped single cells during repetitive detection procedures, regardless of adherent or suspension cells. We demonstrated its use to decode the correlation of protein abundance between secreted extracellular vesicles (EVs) and its donor cells at the same single-cell level, in which we found that these two were poorly correlated with each other. We further applied it in monitoring single-cell protein secretions sequentially from the same single cells. Notably, we observed the digital protein secretion patterns dominate the protein secretion. We also applied the microchip for longitudinally tracking of the single-cell integrative secretions over days, which revealed the presence of “super secretors” within the cell population that could be more persistent to secrete protein or extracellular vesicle for an extended period. The NOMA platform reported here is simple, robust, and easy to operate for realizing sequential measurements from the same single cells, representing a novel and informative tool to inspire new observations in biomedical research.


PROTEOMICS ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 1900231 ◽  
Author(s):  
Meimei Liu ◽  
Meihua Jin ◽  
Linmei Li ◽  
Yahui Ji ◽  
Fengjiao Zhu ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document