scholarly journals Spatiotemporal structure of sensory-evoked and spontaneous activity revealed by mesoscale imaging in anesthetized and awake mice

Cell Reports ◽  
2021 ◽  
Vol 37 (10) ◽  
pp. 110081
Author(s):  
Navvab Afrashteh ◽  
Samsoon Inayat ◽  
Edgar Bermudez-Contreras ◽  
Artur Luczak ◽  
Bruce L. McNaughton ◽  
...  
2018 ◽  
pp. 195-236
Author(s):  
Georg Northoff

Consciousness is neuronal as it is based on the brain and its neural activity. This is what neuroscience tell us citing strong empirical evidence. At the same time, consciousness is ecological in that it extends beyond the brain to body and world – this is what philosophers tell us when they invoke concepts like embodiment, embeddedness, extendedness, and enactment. Is consciousness neuronal or ecological? This amounts to what I describe as “argument of inclusion”: do we need to include body and world in our account of the brain and how is that very same inclusion important for consciousness? I argue that the “spatiotemporal model” of consciousness can well address the “argument of inclusion” by linking and integrating both neuronal and ecological characterizations of consciousness. I demonstrate various data showing how the brain’s spontaneous activity couples and aligns itself to the spatiotemporal structure in the ongoing activities of both body and world. That amounts to a specific spatiotemporal mechanism of the brain that I describe as ‘spatiotemporal alignment’. Conceptually, such ‘spatiotemporal alignment’ corresponds to “body-brain relation” and “world-brain relation”, as I say. World-brain relation and body-brain relation allow for spatiotemporal relation and integration between the different spatiotemporal scales or ranges of world, body, and brain with all three being spatiotemporally aligned and nested within each other. Based on various empirical findings, I argue that such spatiotemporal nestedness between world, body, and brain establishes a “neuro-ecological continuum” and world-brain relation. Both neuro-ecological continuum and world-brain relation are here understood in an empirical sense and can be regarded as necessary condition of possible consciousness, i.e., neural predisposition of consciousness (NPC) (as distinguished from the neural correlates of consciousness/NCC). In sum, the spatiotemporal model determines consciousness by “neuro-ecological continuum” and world-brain relation (with body-brain relation being a subset). Taken in such sense, the spatiotemporal model can well address the “argument of inclusion”. We need to include body and world in our account of the brain in terms of “neuro-ecological continuum” and world-brain relation since otherwise, due to their role as NPC, consciousness remains impossible.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Donovan M. Ashby ◽  
Jeffrey LeDue ◽  
Timothy H. Murphy ◽  
Alexander McGirr

Abstract Peripheral neuropathies result in adaptation in primary sensory and other regions of cortex, and provide a framework for understanding the localized and widespread adaptations that arise from altered sensation. Mesoscale cortical imaging achieves high temporal resolution of activity using optical sensors of neuronal activity to simultaneously image across a wide expanse of cortex and capture this adaptation using sensory-evoked and spontaneous cortical activity. Saphenous nerve ligation in mouse is an animal model of peripheral neuropathy that produces hyperalgesia circumscribed to the hindlimb. We performed saphenous nerve ligation or sham, followed by mesoscale cortical imaging using voltage sensitive dye (VSD) after ten days. We utilized subcutaneous electrical stimulation at multiple stimulus intensities to characterize sensory responses after ligation or sham, and acquired spontaneous activity to characterize functional connectivity and large scale cortical network reorganization. Relative to sham animals, the primary sensory-evoked response to hindlimb stimulation in ligated animals was unaffected in magnitude at all stimulus intensities. However, we observed a diminished propagating wave of cortical activity at lower stimulus intensities in ligated animals after hindlimb, but not forelimb, sensory stimulation. We simultaneously observed a widespread decrease in cortical functional connectivity, where midline association regions appeared most affected. These results are consistent with localized and broad alterations in intracortical connections in response to a peripheral insult, with implications for novel circuit level understanding and intervention for peripheral neuropathies and other conditions affecting sensation.


2008 ◽  
Vol 431 (3) ◽  
pp. 191-196 ◽  
Author(s):  
Kentaroh Takagaki ◽  
Chuan Zhang ◽  
Jian-Young Wu ◽  
Michael Thomas Lippert

2014 ◽  
Vol 1 ◽  
pp. 566-569
Author(s):  
Etienne Hugues ◽  
Juan Vidal ◽  
Jean-Philippe Lachaux ◽  
Dante Mantini ◽  
Maurizio Corbetta ◽  
...  

Author(s):  
Navvab Afrashteh ◽  
Samsoon Inayat ◽  
Edgar Bermudez Contreras ◽  
Artur Luczak ◽  
Bruce L. McNaughton ◽  
...  

AbstractBrain activity propagates across the cortex in diverse spatiotemporal patterns, both as a response to sensory stimulation and during spontaneous activity. Despite been extensively studied, the relationship between the characteristics of such patterns during spontaneous and evoked activity is not completely understood. To investigate this relationship, we compared visual, auditory, and tactile evoked activity patterns elicited with different stimulus strengths and spontaneous activity motifs in lightly anesthetized and awake mice using mesoscale wide-field voltage-sensitive dye and glutamate imaging respectively. The characteristics of cortical activity that we compared include amplitude, speed, direction, and complexity of propagation trajectories in spontaneous and evoked activity patterns. We found that the complexity of the propagation trajectories of spontaneous activity, quantified as their fractal dimension, is higher than the one from sensory evoked responses. Moreover, the speed and direction of propagation, are modulated by the amplitude during both, spontaneous and evoked activity. Finally, we found that spontaneous activity had similar amplitude and speed when compared to evoked activity elicited with low stimulus strengths. However, this similarity gradually decreased when the strength of stimuli eliciting evoked responses increased. Altogether, these findings are consistent with the fact that even primary sensory areas receive widespread inputs from other cortical regions, and that, during rest, the cortex tends to reactivate traces of complex, multi-sensory experiences that may have occurred in a range of different behavioural contexts.


2018 ◽  
pp. 151-194
Author(s):  
Georg Northoff

How and why can neural activity in general and specifically stimulus-induced activity be associated with consciousness? This is the central question in the present chapter. I suggest a Spatiotemporal model that conceives both brain and consciousness in predominantly Spatiotemporal terms rather than being based on specific contents and their neural processing by the brain. This amounts to a Spatiotemporal theory of consciousness (STC). I discuss two specific Spatiotemporal mechanisms that I deem relevant for consciousness. The first Spatiotemporal mechanism refers to “Spatiotemporal integration and nestedness” that describe how different frequencies/regions are coupled and linked, i.e., integrated, and subsequently contained, i.e., nested, with each other. Again, based on empirical findings, “Spatiotemporal integration and nestedness” may predispose the level/state of consciousness, i.e., NPC. The second Spatiotemporal mechanism consists in “Spatiotemporal expansion” that allows to expand the stimuli’ specific points in time and space beyond itself by the brain’s spontaneous activity and its spatiotemporal structure. Based on various empirical findings, I suggest “Spatiotemporal expansion” a sufficient neural condition of consciousness, i.e., a neural correlate of the content of consciousness (NCC). Both spatiotemporal mechanisms are specific in that they can distinguish consciousness and unconsciousness: there is “Spatiotemporal expansion” rather than “Spatiotemporal constriction” and there is “Spatiotemporal nestedness” rather than “Spatiotemporal isolation”. This illustrates the specificity of the Spatiotemporal mechanisms which argues against what can be described as “argument of non-specificity”. Moreover, the STC is based on Spatiotemporal mechanisms rather than mere Spatiotemporal features which renders our Spatiotemporal model non-trivial which can be put forward against what can be described as “argument of triviality”. Taken together, the Spatiotemporal model of consciousness as suggested in the STC is neither non-specific but specific in empirical terms nor trivial on conceptual-logical, phenomenal, and ontological grounds.


2013 ◽  
Vol 110 (1) ◽  
pp. 55-62 ◽  
Author(s):  
Timothy Connelly ◽  
Agnes Savigner ◽  
Minghong Ma

Sensory systems need to tease out stimulation-evoked activity against a noisy background. In the olfactory system, the odor response profile of an olfactory sensory neuron (OSN) is dependent on the type of odorant receptor it expresses. OSNs also exhibit spontaneous activity, which plays a role in establishing proper synaptic connections and may also increase the sensitivity of the cells. However, where the spontaneous activity originates and whether it informs sensory-evoked activity remain unclear. We addressed these questions by examining patch-clamp recordings of genetically labeled mouse OSNs with defined odorant receptors in intact olfactory epithelia. We show that OSNs expressing different odorant receptors had significantly different rates of basal activity. Additionally, OSNs expressing an inactive mutant I7 receptor completely lacked spontaneous activity, despite being able to fire action potentials in response to current injection. This finding strongly suggests that the spontaneous firing of an OSN originates from the spontaneous activation of its G protein-coupled odorant receptor. Moreover, OSNs expressing the same receptor displayed considerable variation in their spontaneous activity, and the variation was broadened upon odor stimulation. Interestingly, there is no significant correlation between the spontaneous and sensory-evoked activity in these neurons. This study reveals that the odorant receptor type determines the spontaneous firing rate of OSNs, but the basal activity does not correlate with the activity induced by near-saturated odor stimulation. The implications of these findings on olfactory information processing are discussed.


Author(s):  
Georg Northoff

Recent investigations have demonstrated the psychological features (e.g. cognitive, affective, and social) of task-unrelated thoughts, as well as their underlying neural correlates in spontaneous activity, which cover various networks and regions, including the default-mode and central executive networks. Despite impressive progress in recent research, the mechanisms by means of which the brain’s spontaneous activity generates and constitutes thoughts remain unclear. This chapter suggests that the spatiotemporal structure of the brain’s spontaneous activity can integrate both content- and process-based approaches to task-unrelated or spontaneous thought—this amounts to what is described as the “spatiotemporal theory of task-unrelated thought” (STTT). Based on various lines of empirical evidence, the STTT postulates two main spatiotemporal mechanisms, spatiotemporal integration and extension. The STTT provides a novel brain-based spatiotemporal theory of task-unrelated thought that focuses on the brain’s spontaneous activity, including its spatiotemporal structure, which allows integrating content- and process-based approaches.


2020 ◽  
Author(s):  
Golan. Karvat ◽  
Mansour Alyahyay ◽  
Ilka Diester

SummaryThe functional role of spontaneous brain activity, especially in relation to external events, is a longstanding key question in neuroscience. Intrinsic and externally-evoked activities were suggested to be anticorrelated, yet inferring an antagonistic mechanism between them remains a challenge. Here, we used beta-band (15-30 Hz) power as a proxy of spontaneous activity in the rat somatosensory cortex during a detection task. Beta-power anticorrelated with sensory-evoked-responses, and high rates of spontaneously occurring beta-bursts predicted reduced detection. By applying a burst-rate detection algorithm in real-time and trial-by-trial stimulus-intensity adjustment, this influence could be counterbalanced. Mechanistically, bursts in all bands indicated transient synchronization of cell assemblies, but only beta-bursts were followed by a reduction in firing-rate. Our findings reveal that spontaneous beta-bursts reflect a dynamic state that competes with external stimuli.


2017 ◽  
Vol 114 (46) ◽  
pp. E9952-E9961 ◽  
Author(s):  
Andrew W. Kraft ◽  
Anish Mitra ◽  
Adam Q. Bauer ◽  
Abraham Z. Snyder ◽  
Marcus E. Raichle ◽  
...  

Decades of work in experimental animals has established the importance of visual experience during critical periods for the development of normal sensory-evoked responses in the visual cortex. However, much less is known concerning the impact of early visual experience on the systems-level organization of spontaneous activity. Human resting-state fMRI has revealed that infraslow fluctuations in spontaneous activity are organized into stereotyped spatiotemporal patterns across the entire brain. Furthermore, the organization of spontaneous infraslow activity (ISA) is plastic in that it can be modulated by learning and experience, suggesting heightened sensitivity to change during critical periods. Here we used wide-field optical intrinsic signal imaging in mice to examine whole-cortex spontaneous ISA patterns. Using monocular or binocular visual deprivation, we examined the effects of critical period visual experience on the development of ISA correlation and latency patterns within and across cortical resting-state networks. Visual modification with monocular lid suturing reduced correlation between left and right cortices (homotopic correlation) within the visual network, but had little effect on internetwork correlation. In contrast, visual deprivation with binocular lid suturing resulted in increased visual homotopic correlation and increased anti-correlation between the visual network and several extravisual networks, suggesting cross-modal plasticity. These network-level changes were markedly attenuated in mice with genetic deletion of Arc, a gene known to be critical for activity-dependent synaptic plasticity. Taken together, our results suggest that critical period visual experience induces global changes in spontaneous ISA relationships, both within the visual network and across networks, through an Arc-dependent mechanism.


Sign in / Sign up

Export Citation Format

Share Document