Thermal-mechanical properties of metakaolin-based geopolymer containing silicon carbide microwhiskers

Author(s):  
Madeleing Taborda Barraza ◽  
Fernando Pelisser ◽  
Philippe Jean Paul Gleize
2012 ◽  
Vol 27 (9) ◽  
pp. 965-969
Author(s):  
Xiao YANG ◽  
Xue-Jian LIU ◽  
Zheng-Ren HUANG ◽  
Gui-Ling LIU ◽  
Xiu-Min YAO

2015 ◽  
Vol 787 ◽  
pp. 568-572 ◽  
Author(s):  
A. Radha ◽  
K.R. Vijayakumar

Composite materials like Aluminium metal matrix composite is playing a very important role in manufacturing industries e.g. automobile and aerospace industries, due to their superior properties such as light weight, low density, high specific modulus, high fatigue strength etc., In this study Aluminium(Al 6061) is reinforced with Silicon Carbide particles and fabricated by Stir Casting Technique (vortex method). The MMC rectangular bars (samples) are prepared with Al6061 and SiC (28 µ size) as the reinforced particles by weight fraction from 0%, 5%, 10%, and 15% of SiC. The microstructure analysis and Mechanical properties like Tensile Strength, Vickers Hardness and Charpy Impact Strength were investigated on prepared specimens. It is observed that the properties are increased with increasing of reinforced specimens by weight fraction.


2010 ◽  
Vol 123-125 ◽  
pp. 1031-1034 ◽  
Author(s):  
Sandhyarani Biswas ◽  
Alok Satapathy ◽  
Amar Patnaik

In order to obtain the favoured material properties for a particular application, it is important to know how the material performance changes with the filler content under given loading conditions. In this study, a series of bamboo fiber reinforced epoxy composites are fabricated using conventional filler (aluminium oxide (Al2O3) and silicon carbide (SiC) and industrial wastes (red mud and copper slag) particles as filler materials. By incorporating the chosen particulate fillers into the bamboo-fiber reinforced epoxy, synergistic effects, as expected are achieved in the form of modified mechanical properties. Inclusion of fiber in neat epoxy improved the load bearing capacity (tensile strength) and the ability to withstand bending (flexural strength) of the composites. But with the incorporation of particulate fillers, the tensile strengths of the composites are found to be decreasing in most of the cases. Among the particulate filled bamboo-epoxy composites, least value of void content are recorded for composites with silicon carbide filling and for the composites with glass fiber reinforcement minimum void fraction is noted for red mud filling. The effects of these four different ceramics on the mechanical properties of bamboo- epoxy composites are investigated and the conclusions drawn from the above investigation are discussed.


2010 ◽  
Vol 70 (14) ◽  
pp. 2063-2067 ◽  
Author(s):  
Shirley Zhiqi Shen ◽  
Stuart Bateman ◽  
Patrick McMahon ◽  
Mel Dell’Olio ◽  
Januar Gotama ◽  
...  

2002 ◽  
Vol 328 (1-2) ◽  
pp. 137-146 ◽  
Author(s):  
A.F. Zimmerman ◽  
G. Palumbo ◽  
K.T. Aust ◽  
U. Erb

Sign in / Sign up

Export Citation Format

Share Document