Influence of substrate surface roughness and moisture content on tensile adhesion performance of 3D printable concrete

Author(s):  
Yaxin Tao ◽  
Karel Lesage ◽  
Kim Van Tittelboom ◽  
Yong Yuan ◽  
Geert De Schutter
2002 ◽  
Vol 16 (06n07) ◽  
pp. 952-957 ◽  
Author(s):  
D. Sheeja ◽  
B. K. Tay ◽  
H. M. Lam ◽  
S. K. Ng

The Co-Cr-Mo alloy is extensively used for tribological applications, including orthopaedic components in total joint replacements. High quality diamond-like carbon (DLC) coatings on metal/alloy substrates are of great interest as they are able to protect them from severe wear and thus prolong the life span of the component. Since the roughness of the metal/alloy varies depending on the applications, a study has been carried out to investigate the effect of substrate surface roughness on the microstructure, sliding life, wear-resistance, coefficient of friction, adhension and hardness of DLC coatings prepared on Co-Cr-Mo alloy substrates under the same deposition condition. The microstructure of the films studied using Raman spectroscopy suggests that the film prepared on a smoother surface contains slightly higher fraction of sp 3 bonded carbon atoms. The characterization using a pin-on-disk tribometer reveals that, the film prepared on the roughest sample (Ra ~ 0.06 μm) exhibits a very short life span of about 20 cycles compared to the film that is prepared on a relatively smoother surface (Ra ~ 0.02 μm), which exhibits a life span of about 340,000 cycles. In order to investigate the origin of this improved property of the DLC film on the smoother surface, adhesive strength and hardness of the films were studied by using a micro-scratch tester and a Nano-indenter, respectively. The results suggest that the film prepared on the smoother surface exhibits better adhesion (higher critical load) and relatively higher hardness.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
K. N. Prabhu ◽  
G. Kumar

The effects of substrate material, substrate surface roughness, and operating temperature on the wetting behavior of Sn–37Pb, Sn–3.5Ag, and Sn–9Zn eutectic solders on metallic substrates were investigated. Solder spreading kinetics was successfully represented by the exponential power law (EPL): ϕ=exp(−Kτn). The EPL parameter K has the significance of accelerating the kinetics of relaxation while the parameter n represents the resistance to spreading process (spread resistance parameter). EPL parameters exhibited a decreasing trend with an increase in surface roughness. Estimated activation energies for solder spreading were found to be in between those reported for inert and highly reactive spreading systems.


Sign in / Sign up

Export Citation Format

Share Document