tensile adhesion
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 16)

H-INDEX

6
(FIVE YEARS 2)

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 253
Author(s):  
Cristina Stancu ◽  
Jacek Michalak

In this study, the results obtained by 19 laboratories participating in 2 editions of the interlaboratory comparison (ILC) determining 2 properties of ceramic tiles adhesives (CTAs), i.e., initial tensile adhesion strength and tensile adhesion strength after water immersion following EN 12004, were analyzed. The results show that participating laboratories maintain a constant quality of their work. The use of z-score analysis, under ISO 13528, allows for classifying 89.5% to 100% of laboratories as satisfactory, depending on the measurement’s kind and edition. The remaining laboratories are classified as questionable. The investigation of the predominant mode of failure of the CTA’s samples tested in the two editions shows significant differences. From the perspective of laboratories, the goal of the ILC has been achieved. From the standpoint of a manufacturer who evaluates a product’s properties when placing it on the market, the results indicate the necessity of a particular treatment of the product evaluation process because the variability of the obtained results is significant. It increases the possibility of the product failing to meet the assessment criteria verified by the construction market supervision authorities. The manufacturer must consider all possible variations in the risk analysis, including the ILC results, to improve the assessment process of CTAs.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5786
Author(s):  
Xingyu Yi ◽  
Huimin Chen ◽  
Houzhi Wang ◽  
Zhiyun Tang ◽  
Jun Yang ◽  
...  

In order to obtain more accurate parameters required for the simulation of asphalt mixtures in the discrete element method (DEM), this study carried out a series of cross-functional asphalt mixture experiments to obtain the DEM simulation meso-parameters. By comparing the results of simulation and actual experiments, a method to obtain the meso-parameters of the DEM simulation was proposed. In this method, the numerical aggregate profile was obtained by X-ray CT scanning and the 3D aggregate model was reconstructed in MIMICS. The linear contact parameters of the aggregate and the Burgers model parameters of the asphalt mastic were obtained by nanoindentation technology. The parameters of the parallel bonding model between the aggregate and mastic were determined by the macroscopic tensile adhesion test and shear bond test. The results showed that the meso-parameters obtained by the macroscopic experiment provide a basis for the calibration of DEM parameters to a certain extent. The trends in simulation results are similar to the macro test results. Therefore, the newly proposed method is feasible.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2811
Author(s):  
Yifan Zheng ◽  
Aidan F. Pierce ◽  
Willi L. Wagner ◽  
Hassan A. Khalil ◽  
Zi Chen ◽  
...  

Anastomotic leakage is a frequent complication of intestinal surgery and a major source of surgical morbidity. The timing of anastomotic failures suggests that leaks are the result of inadequate mechanical support during the vulnerable phase of wound healing. To identify a biomaterial with physical and mechanical properties appropriate for assisted anastomotic healing, we studied the adhesive properties of the plant-derived structural heteropolysaccharide called pectin. Specifically, we examined high methoxyl citrus pectin films at water contents between 17–24% for their adhesivity to ex vivo porcine small bowel serosa. In assays of tensile adhesion strength, pectin demonstrated significantly greater adhesivity to the serosa than either nanocellulose fiber (NCF) films or pressure sensitive adhesives (PSA) (p < 0.001). Similarly, in assays of shear resistance, pectin demonstrated significantly greater adhesivity to the serosa than either NCF films or PSA (p < 0.001). Finally, the pectin films were capable of effectively sealing linear enterotomies in a bowel simulacrum as well as an ex vivo bowel segment. We conclude that pectin is a biomaterial with physical and adhesive properties capable of facilitating anastomotic healing after intestinal surgery.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 330
Author(s):  
Alexander Kyriazis ◽  
Riem Kilian ◽  
Michael Sinapius ◽  
Korbinian Rager ◽  
Andreas Dietzel

The article presents a study on the adhesion of thermoplastic films to a room temperature-hardening epoxy resin, which deals with an important question on sensor integration into fibre composites. By means of a morphological box, a test specimen is developed, which allows to test strength values for the adhesion of thermoplastic films to epoxy resin. Polyimide (PI), which is typically used as a carrier material for flexible sensors, is compared with the thermoplastics polyetherimide (PEI), polyethersulfone (PES) and polyamide 6 (PA6). To evaluate the spatial formation of the interface, images taken with a light microscope, fluorescence microscope and electron microscope and an energy-dispersive X-ray spectroscopy (EDX) analysis are presented. The images show that during the curing process of the epoxy resin the initially expected pronounced interphase does not form. In this respect, it is surprising that PEI achieves such a high adhesion strength even without extended interphase formation, that the failure of the test specimen occurs in the epoxy resin region at a tensile stress of 70 MPa and not at the interface between epoxy and PEI, as might initially be assumed. It is also surprising that PES exhibits the lowest adhesion strength of 5 MPa to room temperature-hardening epoxy resin, although in previous investigations it was often used as a soluble toughness modifier for epoxy resins. The tensile adhesion strength of PI to epoxy resin was found at 27 MPa and the tensile adhesion strength of PA6 to epoxy resin was found at 13 MPa. For sensor integration, the findings mean that flexible sensors on PEI substrates promise a low tendency to delaminate even in the room temperature-hardening epoxy resin used, while the other materials tested indicate an increased tendency to delaminate.


2020 ◽  
Vol 10 (18) ◽  
pp. 6561
Author(s):  
Mateusz Łukasik ◽  
Bartosz Michałowski ◽  
Jacek Michalak

Assessment and verification of constancy of performance (AVCP) is a complex process. Without it, the manufacturer cannot mark the product with the Conformitè Europëenne (CE) marking and place it on the EU market. The verification of the correctness of the AVCP is carried out by market surveillance. In Poland, supervision authorities regularly check manufacturers by collecting construction products that exist on the market for inspection. Among the dry-mix mortars, adhesives for ceramic tiles (CTA) constitute an essential group. The requirements for CTAs are specified in EN 12004. According to the standard, the basic characteristics of cementitious CTAs are tensile adhesion strength and open time. The adhesion measurements are performed after various laboratory conditions tests. The study analyzes the results obtained for 129 samples of cementitious CTAs, collected between the years 2016 and 2019 from the market, and tested in notified laboratories at the request of Polish construction supervision authorities. Many tested products did not meet the threshold values, which resulted in removing them from the market. The paper discusses the complexity of the tensile adhesion strength measurement. The obtained test results are considered in various dimensions, including using the simple acceptance rule method when evaluating the results, which does not consider the measurement uncertainty.


Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 534 ◽  
Author(s):  
Zach Gouveia ◽  
Hiran Perinpanayagam ◽  
Jesse Zhu

The purpose of this study was to develop robust class II organic–inorganic films as antibacterial coatings on titanium alloy (Ti6Al4V) implants. Coating materials were prepared from organic chitosan (20–80 wt.%) coupled by 3-glycydoxytrimethoxysilane (GPTMS) with inorganic tetraethoxysilane (TEOS). These hybrid networks were imbedded with antimicrobial silver nanoparticles (AgNPs) and coated onto polished and acid-etched Ti6Al4V substrates. Magic-angle spinning nuclear magnetic resonance (13CMAS-NMR), attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) and the ninhydrin assay, confirmed the presence and degree of covalent crosslinking (91%) between chitosan and GPTMS. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) identified surface roughness and microtopography on thin films and confirmed homogeneous distribution of elements throughout the coating. Cross-hatch and tensile adhesion testing demonstrated the robustness and adherence (15–20 MPa) of hybrid coatings to acid-etched titanium substrates. Staphylococcus aureus and Escherichia coli cultures and their biofilm formation were inhibited by all hybrid coatings. Antibacterial effects increased markedly for coatings loaded with AgNPs and appeared to increase with chitosan content in biofilm assays. These results are promising in the development of class II hybrid materials as robust and highly adherent antibacterial films on Ti6Al4V implants.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2108
Author(s):  
Yifan Zheng ◽  
Aidan Pierce ◽  
Willi L. Wagner ◽  
Henrik V. Scheller ◽  
Debra Mohnen ◽  
...  

Biodegradable pectin polymers have been recommended for a variety of biomedical applications, ranging from the delivery of oral drugs to the repair of injured visceral organs. A promising approach to regulate pectin biostability is the blending of pectin films. To investigate the development of conjoined films, we examined the physical properties of high-methoxyl pectin polymer-polymer (homopolymer) interactions at the adhesive interface. Pectin polymers were tested in glass phase (10–13% w/w water content) and gel phase (38–41% w/w water content). The tensile strength of polymer-polymer adhesion was measured after variable development time and compressive force. Regardless of pretest parameters, the adhesive strength of two glass phase films was negligible. In contrast, adhesion testing of two gel phase films resulted in significant tensile adhesion strength (p < 0.01). Adhesion was also observed between glass phase and gel phase films—likely reflecting the diffusion of water from the gel phase to the glass phase films. In studies of the interaction between two gel phase films, the polymer-polymer adhesive strength increased linearly with increasing compressive force (range 10–80 N) (R2 = 0.956). In contrast, adhesive strength increased logarithmically with time (range 10–10,000 s) (R2 = 0.913); most of the adhesive strength was observed within minutes of contact. Fracture mechanics demonstrated that the adhesion of two gel phase films resulted in a conjoined film with distinctive physical properties including increased extensibility, decreased stiffness and a 30% increase in the work of cohesion relative to native polymers (p < 0.01). Scanning electron microscopy of the conjoined films demonstrated cross-grain adhesion at the interface between the adhesive homopolymers. These structural and functional data suggest that blended pectin films have emergent physical properties resulting from the cross-grain intermingling of interfacial pectin chains.


2020 ◽  
Vol 897 ◽  
pp. 56-60
Author(s):  
Nikolay Kuleshov ◽  
Nikolay Dolgov ◽  
Igor Smirnov ◽  
Leonid Vinogradov ◽  
Vladimir Shestakov

The adhesion strength of plasma-sprayed ceramic coatings was studied. Alumina powder was used for plasma spraying. A titanium oxide Nano powder with a particle size of 40-50 [nm] was used as a modifier. The optimal conditions of plasma spraying of coatings are established. The adhesion strength was used as an optimization criterion. Coating adhesion was determined by tensile adhesion testing. A mathematical model is obtained that allows one to determine the effect of spraying conditions (lens current, arc current, and the position of the solenoid relative to the nozzle) on the adhesion strength.


Sign in / Sign up

Export Citation Format

Share Document