Composition and microstructure of 20-year-old ordinary Portland cement–ground granulated blast-furnace slag blends containing 0 to 100% slag

2010 ◽  
Vol 40 (7) ◽  
pp. 971-983 ◽  
Author(s):  
R. Taylor ◽  
I.G. Richardson ◽  
R.M.D. Brydson
2010 ◽  
Vol 158 ◽  
pp. 1-11 ◽  
Author(s):  
Zi Qiao Jin ◽  
Xian Jun Lu ◽  
Shu Gang Hu

In order to stimulate the potential cementitious property of granulated blast furnace slag (GBFS), the ground GBFS sample (Wei Fang Iron and Steel Corporation, China) was activated by lime and gypsum under different dosages. The results showed that lime is an effective activator for the slag, and the optimum dosage of lime is about 10% (w/w) of the slag. At the optimum dosage of lime, the 28 days compressive strength of the lime-slag paste is higher than that of 32.5 ordinary Portland cement (OPC). But, the early age strength (3 and 7 days compressive strength) of the lime-slag paste is lower than that of the OPC. Addition of gypsum can effectively improve the early age strength of the lime-slag paste. At the ratio of gypsum:lime:slag of 8.2:9.2:82.6 (w/w), both the early and long-term compressive strengths of the gypsum-lime-slag paste are higher than that of the OPC. According to XRD, TG-DTA and SEM detections of the hydration products of the lime-slag paste, the gypsum-lime-slag paste and the OPC paste, it reveals that the hydration process of the GBFS-based cementitious material is different from the ordinary Portland cement and the presence of ettringite (AFt) contributes to the early age strength of the pastes. The major hydration product of the OPC paste (<7 days) were measured as ettringite (AFt), but the AFt phase was not detected in the hydration product of the lime-slag paste and the major hydration product of the lime-slag paste was determined as amorphous CSH gel. However, AFt was detected in the hydration products of the gypsum-lime-slag paste in the early stages of hydration, and the formation of AFt is favorable for the early strength improvement of the material.


1992 ◽  
Vol 294 ◽  
Author(s):  
John D Palmer ◽  
Graham A Fairhall

ABSTRACTAt the British Nuclear Fuels (BNFL) Sellafield reprocessing plant in the United Kingdom, cement grouts based on ground granulated blast-furnace slag (BFS) and ordinary Portland cement (OPC) are used extensively for immobilising radioactive wastes. These grouts have excluded organic admixtures in order to reduce process complexity and uncertainties, regarding the performance of organic admixtures with BFS/OPC grouts, particularly under irradiation.This study has investigated the effects of sulfonated melamine formaldehyde and naphthalene condensates on grout properties. The results show grout settlement and strengths increase on addition of additives, with the additives remaining largely in the pore solution. Under irradiation the additives breakdown liberating hydrogen and carbon dioxide. Strength and product dimensions are unaffected by irradiation.


2019 ◽  
Vol 7 (4) ◽  
pp. 106
Author(s):  
Michael O’Shea ◽  
Kim Gray ◽  
Jimmy Murphy

The occurrence of contaminated materials encountered during harbour dredging is becoming increasingly problematic for harbour and port authorities. The risks to human health, wildlife and port infrastructure of exposure to such contaminants necessitates the removal or containment of such risks. As with contaminated terrestrial sites the solidification and stabilization (S/S) of this material has been proven to be an effective alternative to disposing of contaminants off-site, typically via dumping at sea or in a landfill. Research, to date, on S/S has been focused on heavily contaminated sediments in large industrial ports. However, with tightening environmental regulations, the limits of acceptable contamination are generally decreasing. This means the number of port dredging projects requiring contaminant remediation is increasing. There is now a need to examine the effectiveness of S/S on harbour sites that are mildly contaminated from both an environmental and project feasibility viewpoint. To that end, this study examines the effectiveness of various S/S mix percentages of ordinary Portland cement (OPC) and ground granulated blast furnace slag (GGBS) in retarding the leaching of contaminants from a mildly contaminated harbour site.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3448
Author(s):  
Chenhui Jiang ◽  
Aiying Wang ◽  
Xufan Bao ◽  
Zefeng Chen ◽  
Tongyuan Ni ◽  
...  

This paper presents an experimental investigation on geopolymer coatings (GPC) in terms of surface protection of civil structures. The GPC mixtures were prepared with a quadruple precursor simultaneously containing fly ash (FA), ground granulated blast-furnace slag (GBFS), metakaolin (MK), and Portland cement (OPC). Setting time, compressive along with adhesive strength and permeability, were tested and interpreted from a perspective of potential applications. The preferred GPC with favorable setting time (not shorter than 120 min) and desirable compressive strength (not lower than 35 MPa) was selected from 85 mixture formulations. The results indicate that balancing strength and setting behavior is viable with the aid of the multi-componential precursor and the mixture design based on total molar ratios of key oxides or chemical elements. Adhesive strength of the optimized GPC mixtures was ranged from 1.5 to 3.4 MPa. The induced charge passed based on a rapid test of coated concrete specimens with the preferred GPC was 30% lower than that of the uncoated ones. Setting time of GPC was positively correlated with η[Si/(Na+Al)]. An abrupt increase of setting time occurred when the molar ratio was greater than 1.1. Compressive strength of GPC was positively affected by mass contents of ground granulated blast furnace slag, metakaolin and ordinary Portland cement, and was negatively affected by mass content of fly ash, respectively. Sustained seawater immersion impaired the strength of GPC to a negligible extent. Overall, GPC potentially serves a double purpose of satisfying the usage requirements and achieving a cleaner future.


Sign in / Sign up

Export Citation Format

Share Document