Early age strength increase of fly ash blended cement by a ternary hardening accelerating admixture

2016 ◽  
Vol 81 ◽  
pp. 59-69 ◽  
Author(s):  
Kien Hoang ◽  
Harald Justnes ◽  
Mette Geiker
2012 ◽  
Vol 535-537 ◽  
pp. 1735-1738 ◽  
Author(s):  
Yan Li ◽  
Dao Sheng Sun ◽  
Xiu Sheng Wu ◽  
Ai Guo Wang ◽  
Wei Xu ◽  
...  

This paper reports the drying shrinkage and compressive strength results of cement pastes with fly ash and silica fume. In this study, Portland cement (PC) was used as the basic cementitious material. Fly ash (FA) and silica fume (SF) were used as cement replacement materials at levels of 0%, 5%, 10%, and 15% , 40%, 35%, 25%, and 15% by weight of the total cementitious material, respectively. The water/cement (PC + FA + SF) ratios (w/c) was 0.28 by weight. The samples produced from fresh pastes were demoulded after a day; then they were cured at 20 ±1°C with 50 ± 3% relative humidity (RH) until the samples were used for drying shrinkage and compressive strength measurement at various ages. The results show that drying shrinkage and compressive strength increase with increasing SF content, and the optimum composition of blended cement pastes is the cement paste with 30% fly ash and 10% silica fume, which possesses lower drying shrinkage values than that of plain cement paste and higher early age strength than that of blended cement pastes with fly ash. Furthermore, a linear relationship is established between compressive strength and drying shrinkage. By comparing the development of compressive strength and the drying shrinkage deformations, it appears possible to predict the drying shrinkage according to the acquired compressive strength.


2019 ◽  
Vol 17 (6) ◽  
pp. 295-308 ◽  
Author(s):  
Quang Dieu Nguyen ◽  
Mohammad Shakhaout Hossain Khan ◽  
Tengfei Xu ◽  
Arnaud Castel

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1003
Author(s):  
Pantharee Kongsat ◽  
Sakprayut Sinthupinyo ◽  
Edgar A. O’Rear ◽  
Thirawudh Pongprayoon

Several types of hematite nanoparticles (α-Fe2O3) have been investigated for their effects on the structure and properties of fly ash (FA) blended cement. All synthesized nanoparticles were found to be of spherical shape, but of different particle sizes ranging from 10 to 195 nm depending on the surfactant used in their preparation. The cement hydration with time showed 1.0% α-Fe2O3 nanoparticles are effective accelerators for FA blended cement. Moreover, adding α-Fe2O3 nanoparticles in FA blended cement enhanced the compressive strength and workability of cement. Nanoparticle size and size distribution were important for optimal filling of various size of pores within the cement structure.


Structures ◽  
2021 ◽  
Vol 29 ◽  
pp. 1898-1910
Author(s):  
Samira Mahmud ◽  
Tanvir Manzur ◽  
Samina Samrose ◽  
Tafannum Torsha

J ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 223-232
Author(s):  
Esperanza Menéndez ◽  
Cristina Argiz ◽  
Miguel Ángel Sanjuán

Ground coal bottom ash is considered a novel material when used in common cement production as a blended cement. This new application must be evaluated by means of the study of its pozzolanic properties. Coal bottom ash, in some countries, is being used as a replacement for natural sand, but in some others, it is disposed of in a landfill, leading thus to environmental problems. The pozzolanic properties of ground coal bottom ash and coal fly ash cements were investigated in order to assess their pozzolanic performance. Proportions of coal fly ash and ground coal bottom ash in the mixes were 100:0, 90:10, 80:20, 50:50, 0:100. Next, multicomponent cements were formulated using 10%, 25% or 35% of ashes. In general, the pozzolanic performance of the ground coal bottom ash is quite similar to that of the coal fly ash. As expected, the pozzolanic reaction of both of them proceeds slowly at early ages, but the reaction rate increases over time. Ground coal bottom ash is a promising novel material with pozzolanic properties which are comparable to that of coal fly ashes. Then, coal bottom ash subjected to an adequate mechanical grinding is suitable to be used to produce common coal-ash cements.


Author(s):  
Chidanand Patil ◽  
M. Manjunath ◽  
Sateesh Hosamane ◽  
Sneha Bandekar ◽  
Rubeena Athani

Sign in / Sign up

Export Citation Format

Share Document