Impact of pore solution concentration on the accelerated mortar bar alkali-silica reactivity test

2019 ◽  
Vol 121 ◽  
pp. 72-80 ◽  
Author(s):  
Farideh Golmakani ◽  
R. Douglas Hooton
2021 ◽  
Author(s):  
Robert C Johnson

This thesis reports the findings of a study carried out to determine the effectiveness of Accelerated Tests in evaluating the Alkali-Silica Reactivity of Recycled Concrete Aggregates. The study evaluated the variability of the Accelerated Mortar Bar Test due to test variables as well as the single and multi-laboratory variation. The variability of the Concrete Microbar Test due to test variables and the correlation to results from Accelerated Mortar Bar and Concrete Prism Test results were also evaluated. The tests were corroborated by comparing the porosity, permeability and alkali binding capacity of samples tested by the accelerated tests. It was found that the Accelerated Mortar Bar Test provides acceptable results when the test variables, such as crushing methods and absorption values, are carried out and evaluated properly. The Concrete Microbar Test was found to underestimate the expansion of reactive aggregates. However, the same test was found to provide good correlation to the expansion results of Concrete Prisms incorporating Supplementary Cementing Materials when the test duration was increased.


Author(s):  
Peter B. Tinker ◽  
Peter Nye

We discussed in chapter 4 the movement of solute between small volumes of soil, and in chapter 5 some properties of plant roots and associated hairs, particularly the relation between the rate of uptake at the root surface and the concentration of solute in the ambient solution. In the chapters to follow, we consider the plant root in contact with the soil, and deal with their association in increasingly complex situations; first, when the root acts merely as a sink and, second, when it modifies its relations with the surrounding soil by changing its pH, excreting ions, stimulating microorganisms, or developing mycorrhizas. In this chapter, we take the simplest situation that can be studied in detail, namely, a single intact root alone in a volume of soil so large that it can be considered infinite. The essential transport processes occurring near the root surface are illustrated in figure 6.1. We have examined in chapter 3 the rapid dynamic equilibrium between solutes in the soil pore solution and those sorbed on the immediately adjacent solid surfaces. These sorbed solutes tend to buffer the soil solution against changes in concentration induced by root uptake. At the root surface, solutes are absorbed at a rate related to their concentration in the soil solution at the boundary (section 5.3.2); and the root demand coefficient, αa, is defined by the equation . . . I = 2παaCLa (6.1) . . . where I = inflow (rate of uptake per unit length), a = root radius, CLa = concentration in solution at the root surface. To calculate the inflow, we have to know CLa, and the main topic of this chapter is the relation between CLa, and the soil pore solution concentration CL. The root also absorbs water at its surface due to transpiration (chapter 2) so that the soil solution flows through the soil pores, thus carrying solutes to the root surface by mass flow (convection). Barber et al. (1962) calculated whether the nutrients in maize could be acquired solely by this process, by multiplying the composition of the soil solution by the amount of water the maize had transpired.


2014 ◽  
Vol 567 ◽  
pp. 405-410 ◽  
Author(s):  
Muhd Fadhil Nuruddin ◽  
Siti Nooriza Abd. Razak

Alkali Silica Reaction (ASR) is a chemical reaction which affects both strength and durability of concrete. ASR occurs due to a chemical reaction between alkali oxides presents in the cement paste and reactive silica in aggregate. This reaction could lead to the volume expansion, cracking, loss of strength and potential failure of the concrete. This research aimed to investigate the potential alkali silica reactivity on geopolymer concrete. Specimens were prepared using Class F fly ash as binder while sodium hydroxide and sodium silicate as alkaline activators. ASTM C1260 was adopted to determine potential alkali silica reactivity by measuring the length change of mortar bar as well as the decrease in compressive strength test. Results show that fly ash based geopolymer concrete is less vulnerable to ASR as the expansion of mortar bar is below the threshold of ASTM standard limit which is 0.10% of expansion. In term of strength, the geopolymer concrete did not reduced instead it increased. From the results, it has indicated that both tests ensure that the durability of geopolymer concrete is excellent and can withstand a long life span.


2017 ◽  
Vol 65 (6) ◽  
pp. 773-778 ◽  
Author(s):  
J. Zapała-Sławeta ◽  
Z. Owsiak

AbstractAlkali-silica reaction (ASR) is a reaction between amorphous or poorly crystallized siliceous phase, present in aggregates, and sodium and potassium hydroxides in the pore solution of concrete. Chemical admixtures such as lithium compounds are known to have high potential of inhibiting ASR. The aim of this study was to determine the effect of lithium nitrate on ASR in mortars containing high reactive opal aggregate over a long period of time. Mortar bar expansion tests were performed and microstructures of mortar bars were observed by scanning electron microscopy coupled with an energy dispersive X-ray microanalyser. Results from this study showed that effectiveness of lithium nitrate in mitigating ASR was limited over a long period of time. A larger amount of ASR gel which was formed in the presence of lithium nitrate indicated that the deterioration processes intensify within longer periods of time, which so far has not been observed in literature. Microscopic observation confirmed the presence of alkali-silica gel and delayed ettringite in mortars with lithium nitrate.


2013 ◽  
Vol 2 (1) ◽  
pp. 20120030 ◽  
Author(s):  
Matthew P. Adams ◽  
Angela Jones ◽  
Sean Beauchemin ◽  
Robert Johnson ◽  
Benoit Fournier ◽  
...  

2021 ◽  
Author(s):  
Medhat Shehata ◽  
Robert Johnson

The effectiveness of accelerated tests in evaluating the Alkali-Silica Reactivity of Recycled Concrete Aggregates was evaluated. The Accelerated Mortar Bar Test was found effective for evaluating potential alkali-reactivity when the test variables, such as crushing method and absorption, are carried out in a well-defined process. The method of crushing was found to have significant impact on the expansion. The Concrete Microbar Test (CMBT) provides good correlation to the expansion of Concrete Prisms incorporating Supplementary Cementing Materials when an expansion limit of 0.10% at 56 days or 0.04% at 28 days were used, based on the limited number of tests carried out here.


Sign in / Sign up

Export Citation Format

Share Document