Performance analysis of cross-flow forward osmosis membrane modules with mesh feed spacer using three-dimensional computational fluid dynamics simulations

Author(s):  
Naeem Niknafs ◽  
Alireza Jalali
2019 ◽  
Vol 128 (8) ◽  
pp. 742-748 ◽  
Author(s):  
Hanyao Huang ◽  
Xu Cheng ◽  
Yang Wang ◽  
Dantong Huang ◽  
Yuhao Wei ◽  
...  

Objectives: Competent velopharyngeal (VP) function is the basis for normal speech. Understanding how VP structure influences the airflow during speech details is essential to the surgical improvement of pharyngoplasty. In this study, we aimed to illuminate the airflow features corresponding to various VP closure states using computed dynamic simulations. Methods: Three-dimensional models of the upper airways were established based on computed tomography of 8 volunteers. The velopharyngeal port was simulated by a cylinder. Computational fluid dynamics simulations were applied to illustrate the correlation between the VP port size and the airflow parameters, including the flow velocity, pressure in the velopharyngeal port, as well as the pressure in oral and nasal cavity. Results: The airflow dynamics at the velopharynx were maintained in the same velopharyngeal pattern as the area of the velopharyngeal port increased from 0 to 25 mm2. A total of 5 airflow patterns with distinct features were captured, corresponding to adequate closure, adequate/borderline closure (Class I and II), borderline/inadequate closure, and inadequate closure. The maximal orifice area that could be tolerated for adequate VP closure was determined to be 2.01 mm2. Conclusion: Different VP functions are of characteristic airflow dynamic features. Computational fluid dynamic simulation is of application potential in individualized VP surgery planning.


2020 ◽  
Vol MA2020-02 (38) ◽  
pp. 2495-2495
Author(s):  
Joseph Steven Lopata ◽  
Sanggyu Kang ◽  
Hyun-Seok Cho ◽  
Chang Hee Kim ◽  
Sirivatch Shimpalee

Author(s):  
Yao Yan ◽  
Yang Liu ◽  
Haibo Jiang ◽  
Zhike Peng ◽  
Alasdair Crawford ◽  
...  

This paper studies the prototype development of the vibro-impact capsule system aiming for autonomous mobile sensing for pipeline inspection. Self-propelled progression of the system is obtained by employing a vibro-impact oscillator encapsuled in the capsule without the requirement of any external mechanisms, such as wheels, arms, or legs. A dummy capsule prototype is designed, and the best geometric parameters, capsule and cap arc lengths, for minimizing fluid resistance forces are obtained through two-dimensional and three-dimensional computational fluid dynamics analyses, which are confirmed by wind tunnel tests. In order to verify the concept of self-propulsion, both original and optimized capsule prototypes are tested in a fluid pipe. Experimental results are compared with computational fluid dynamics simulations to confirm the efficacy of the vibro-impact self-propelled driving.


2002 ◽  
Author(s):  
Steven P. O’Halloran ◽  
Mohammad H. Hosni ◽  
B. Terry Beck ◽  
Thomas P. Gielda

Computational fluid dynamics (CFD) simulations were used to predict three-dimensional flow within a one-tenth-scale room. The dimensions of the scaled room were 732 × 488 × 274 mm (28.8 × 19.2 × 10.8 in.) and symmetry was utilized so that only half of the room was modeled. Corresponding measurements were made under isothermal conditions and water was used as the working fluid instead of air. The commercially available software Fluent was used to perform the simulations. Two turbulence models were used: the renormalization group (RNG) k-ε model and the Reynolds-stress model. The CFD setup is presented in this paper, along with the velocity and turbulent kinetic energy results. The simulation results are compared to previously obtained three-dimensional particle image velocimetry (PIV) measurements made within the same scaled room under similar conditions.


Author(s):  
Bashar Attiya ◽  
I-Han Liu ◽  
Cosan Daskiran ◽  
Jacob Riglin ◽  
Alparslan Oztekin

Computational fluid dynamics simulations have been conducted for flows past two finite tandem plates at Reynolds number of 50,000. Large Eddy Simulations (LES) were employed in two and three-dimensional geometries to study the interference between tandem plate pair. In order to study the effects of plate corner angle on the flow field and drag forces, two different plate end corners, 90° and a sharp 45° corner angle, were also investigated. The switching from 90° to 45° corners complicate the flow pattern, increase the mean value of drag force and the fluctuations of the drag on the plate. As vortices shed from the upstream plate and reached close proximity to the face of the downstream plate, the vortex cores deformed highly. This behavior reduces the drag coefficient in the downstream plate. Drag coefficient was higher in the 45° case, for both the up and downstream plates by 5% and 10% respectively. Drag coefficient of downstream is recovered almost fully in the 45° case with just 3% difference from the upstream compared to 7% difference in 90° case. Lagrangian Coherent structures were identified and presented in a two-dimensional geometry. This gave a better understanding of the wake flow structure and their influence on the hydrodynamic loading on plates. Contours of vorticity fields and iso-surfaces of Q-criterion, and pressure distribution around the plates were also presented and discussed.


Author(s):  
Abdullah A. Alghafis ◽  
Ahmed M. Alshwairekh ◽  
Anas M. Alwatban ◽  
Umar F. Alqsair ◽  
Alparslan Oztekin

Abstract Computational fluid dynamics simulations are conducted to study the hemodialysis process in separation modules containing hollow fiber membranes. Hemodialysis is the filtration process which removes waste out of the blood. In this work, three-dimensional steady-state laminar flow simulations are conducted to investigate the effect of disk baffles on the performance of the hemodialysis process. The uniformly spaced baffles are placed along the axis of the shell within the dialyzer. The disk baffles of diameter 2.85 dhd were considered, where dhd is the shell hydraulic diameter. The inlet solute mass fraction of the blood solution is fixed at 0.00074, while the inlet solute mass fraction of the dialysate solution varied as 0.004 and 0.007. The blood and the dialysate flow rates are fixed. Our results revealed that the presence of disk baffles in the shell mitigates the concentration polarization and yields higher urea permeation. The higher dialysate concentration solute yields a 41.2% increase in the urea permeate rate compared to the lower dialysate solute concentration.


Sign in / Sign up

Export Citation Format

Share Document