Effect of high energy milling process on microstructure and piezoelectric/dielectric properties of K0.475Na0.475Li0.05NbO3 solid solution

2013 ◽  
Vol 39 (1) ◽  
pp. 691-699 ◽  
Author(s):  
Soon-Chul Ur ◽  
Iqbal Mahmud ◽  
Man-Soon Yoon
2005 ◽  
Vol 498-499 ◽  
pp. 146-151
Author(s):  
Y.A. Giffoni ◽  
Erika Coaglia Trindade Ramos ◽  
Ana Sofia Ramos ◽  
Hugo Ricardo Zschommler Sandim ◽  
M.T.T. Pacheco

Porous Ti-Nb alloys are promising candidates for biomedical applications. In the present study, alloy powders containing 60 wt-% Nb were prepared by high-energy milling of Nb, Ti, and/or TiH2 powders. The high-energy milling process was carried out in a planetary ball mill. The starting and as-milled materials were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM). Elemental (Nb, and Ti) and TiH2 powder mixtures with composition Nb-40wt%Ti were mechanically alloyed for 2 to 30 h. The formation of a BCC Nb(Ti) solid solution by high-energy milling using elemental Ti powder to produce Nb-40Ti was observed after milling for 30 h. A HCP-Ti solid solution was formed after milling for 30 h due to the partial decomposition of titanium hydride powder mixture during high-energy milling.


2015 ◽  
Vol 21 (5) ◽  
pp. 923-928 ◽  
Author(s):  
Sun-A Jung ◽  
Hanjung Kwon ◽  
Ki-Min Roh ◽  
Chang-Yul Suh ◽  
Wonbaek Kim

2012 ◽  
Vol 536 ◽  
pp. S45-S49 ◽  
Author(s):  
Won-Kyung Kang ◽  
Fikret Yılmaz ◽  
Hyo-Seob Kim ◽  
Jar-Myung Koo ◽  
Soon-Jik Hong

2011 ◽  
Vol 25 (11) ◽  
pp. 855-861 ◽  
Author(s):  
M. SHAHMIRZAEI ◽  
S. A. SEYYED EBRAHIMI ◽  
R. DEHGHAN

In this work, a novel method of mechano sol–gel auto-combustion has been developed for production of single phase nickel ferrite nanocrystalline powder, consisting of a sol–gel auto-combustion synthesis followed by a high energy milling process before calcination. Sol–gel auto-combustion was carried out using a gel including citric acid as a reductant and metal nitrates as oxidants. This gel exhibited a self-propagating behavior after ignition in air. The effects of the intermediate high energy milling on the physical properties of the final product after calcination were investigated. The results showed that with a high energy milling of the sol–gel auto-combusted powders with a ball-to-powder mass ratio of 20 for 20 h, the temperature of calcination for synthesis of the single phase ferrite reduced from 1000°C to 700°C and the size of the ferrite crystallites decreased from 72 nm to 15 nm.


Author(s):  
Mehdi Delshad Chermahini ◽  
Ghorbanali Rafiei Chermahini ◽  
Jamal Safari

Abstract The effect of Mg content and milling time were investigated on the microstructure and microhardness values of Al-xMg/5Al2O3 (x = 0, 4, 8 and 12 wt %) nanostructured composite prepared via high energy milling technique. XRD results showed an acceleration of alloying process and formation of Al (Mg) ss by enhancing percentage of Mg element. Also, by increase in Mg percentage the grain size reduction was more considerable during milling treatment. Additionally, increment of the Mg content up to 12 wt%, causes the increase in micro-strain of the samples (from 0.31 to 0.82%). Increase in Mg concentration accelerates the mechanical milling process. According to SEM results a coaxial and circular morphology with a uniform distribution of powder particles has been formed. Up to 12 wt% (for each milling time), significant increase in microhardness (215 HV) was carried out due to solid solution hardening and crystallite refinement. From 10 to 15 h, a slight increase in microhardness up to 218 HV can be observed.


2020 ◽  
Vol 820 ◽  
pp. 153167 ◽  
Author(s):  
H. Rojas-Chávez ◽  
J.M. Juárez-García ◽  
R. Herrera-Rivera ◽  
E. Flores-Rojas ◽  
J.L. González-Domínguez ◽  
...  

2005 ◽  
Vol 498-499 ◽  
pp. 331-336 ◽  
Author(s):  
R. Muccillo ◽  
L. Franchi ◽  
J.T. Santos ◽  
I.C. Cosentino ◽  
E.N.S. Muccillo

Strontium ferrites powders were obtained by high energy milling process after calcinations of iron oxide and barium carbonate. Phase formations and crystallite size was determined using X-ray diffraction. Morphology, particle size and agglomeration stages were analyzed using scanning and transmission electron microscopy. Results show particles in the range of 14 to 40 nanometers, large agglomerates and crystalline phases formation.


2008 ◽  
Vol 591-593 ◽  
pp. 514-520 ◽  
Author(s):  
Thomaz Augusto Guisard Restivo ◽  
Sonia Regina Homem de Mello-Castanho

A new method for SOFC fuel cell anode preparation is proposed where the main difference lies over cermet powder processing by high energy milling. Yttria stabilized zirconia powder and metallic nickel undergo co-milling in a vibratory device employing zirconia bead media. Dispersed and homogeneous powders are therefore obtained. The material is pressed uniaxialy and sintered at 1350°C for 0,5 h in air and under argon and hydrogen. In the former case, partial nickel oxidation occurs before sintering leading to small shrinkage down to 2% and porosity about 38%. Linear shrinkages from 5 to 7% after sintering in both inert and reduced atmospheres were observed not demanding pore-former additives. Conventional YSZ, Ni and NiO powder mixtures were prepared for comparison purpose. The high energy milling process is able to reduce the starting sintering temperature by 130° C besides a higher densification compared to the simple mixtures YSZ+Ni. The excessive sintering and particle coalescence is absent in high energy milled material, where the metal is well dispersed and the microstructure is highly homogenous. The high energy milling process is a promising route to prepare with excellent performance anode materials for SOFC cells.


Sign in / Sign up

Export Citation Format

Share Document