An elevated temperature infrared emissivity ceramic coating formed on 2024 aluminium alloy by microarc oxidation

2013 ◽  
Vol 39 (3) ◽  
pp. 2869-2875 ◽  
Author(s):  
Y.M. Wang ◽  
H. Tian ◽  
X.E. Shen ◽  
L. Wen ◽  
J.H. Ouyang ◽  
...  
2007 ◽  
Vol 353-358 ◽  
pp. 1733-1736 ◽  
Author(s):  
Fei Chen ◽  
Hai Zhou ◽  
Chen Chen ◽  
Fan Xiu Lu ◽  
Fan Xiu Lu

Oxidation ceramic coating was directly synthesized on LY12 aluminium alloy by micro-arc oxidation (MAO) process in Na2SiO3 electrolyte solution with the Na2WO4-KOH-Na2EDTA addition. The corrosion resistance of the coating was tested using CS300P electrochemical corrosion workshop in 3.5% NaCl solution. Using the scanning electron microscopy (SEM) and X-ray diffraction (XRD), the cross-section microstructure, the surface morphology and the phase structure of the micro-arc oxidation ceramic coating were analyzed. The results showed that the corrosion resistance of the micro-arc oxidation ceramic coating in 3.5% NaCl solution was enhanced remarkably, the corrosion velocity was obviously slowed down. The thickness of micro-arc oxidation ceramic coating was about 11μm. The final phases in the coating were found to be α-Al2O3 and γ-Al2O3. The mechanism of the oxidation ceramic coating formation was investigated too.


2016 ◽  
Vol 877 ◽  
pp. 393-399
Author(s):  
Jia Zhou ◽  
Jun Ping Zhang ◽  
Ming Tu Ma

This paper presents the main achievements of a research project aimed at investigating the applicability of the hot stamping technology to non heat treatable aluminium alloys of the 5052 H32 and heat treatable aluminium alloys of the 6016 T4P after six months natural aging. The formability and mechanical properties of 5052 H32 and 6016 T4P aluminum alloy sheets after six months natural aging under different temperature conditions were studied, the processing characteristics and potential of the two aluminium alloy at room and elevated temperature were investigated. The results indicated that the 6016 aluminum alloy sheet exhibit better mechanical properties at room temperature. 5052 H32 aluminum alloy sheet shows better formability at elevated temperature, and it has higher potential to increase formability by raising the temperature.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Mohannad M. S. Al Bosta ◽  
Keng-Jeng Ma ◽  
Hsi-Hsin Chien

High emitter MAO ceramic coatings were fabricated on the Al 6061 alloy, using different bipolar anodic current densities, in an alkali silicate electrolyte. We found that, as the current density increased from 10.94 A/dm2 to 43.75 A/dm2, the layer thickness was increased from 10.9 μm to 18.5 μm, the surface roughness was increased from 0.79 μm to 1.27 μm, the area ratio of volcano-like microstructure was increased from 55.6% to 59.6%, the volcano-like density was decreased from 2620 mm−2 to 1420 mm−2, and the γ-alumina phase was decreased from 66.6 wt.% to 26.2 wt.%, while the α-alumina phase was increased from 3.9 wt.% to 27.6 wt.%. The sillimanite and cristobalite phases were around 20 wt.% and 9 wt.%, respectively, for 10.94 A/dm2 and approximately constant around 40 wt.% and less than 5 wt.%, respectively, for the anodic current densities 14.58, 21.88, and 43.75 A/dm2. The ceramic surface roughness and thickness slightly enhanced the IR emissivity in the semitransparent region (4.0–7.8 μm), while the existing phases contributed together to raise the emissivity in the opaque region (8.6–16.0 μm) to higher but approximately the same emissivities.


2011 ◽  
Vol 228-229 ◽  
pp. 661-665
Author(s):  
Fei Chen ◽  
Hai Zhou ◽  
Fan Xiu Lv

A relatively new process called microarc oxidation (MAO), also called plasma electrolytic oxidation (PEO), has emerged as a unique technique to produce hard, thick ceramic oxide coatings on different Mg or Al alloys. The magnesium offers various possibilities of application in industry, but its poor property in corrosion resistance, wear resistance, hardness and so on, limited its application. Through microarc oxidation, ceramic coating is directly formed on the surface of pure magnesium, by which its surface property is greatly improved. In this paper, a dense ceramic oxide ceramic coating was prepared on the magnesium by microarc oxidation in a Na2SiO3-Na2WO4-KOH-Na2EDTA electrolytic solution. The surface morphology of the coating was observed by the Scanning Electron Microscope (SEM). Using the X-ray diffraction (XRD), the phase structure of the coating was analyzed. The friction and wear behavior of the micro-arc oxidation ceramic coating under dry sliding against GCr15 steel was evaluated on a ball-on-disc test rig. The results showed that the magnesium was characterized by adhesion wear and scuffing under dry sliding against the steel, while the surface micro-arc oxidation ceramic coating experienced much abated adhesion wear and scuffing under the same testing condition. The micro-arc oxidation ceramic coating showed good friction-reducing and fair antiwear ability in dry sliding against the steel.


Sign in / Sign up

Export Citation Format

Share Document