Improved breakdown strength and energy density of Al2O3/nano-ZrO2 composite films via enhanced interfacial repairing behavior

2018 ◽  
Vol 44 (17) ◽  
pp. 21428-21436 ◽  
Author(s):  
Mengxin Li ◽  
Manwen Yao ◽  
Zhen Su ◽  
Wenbin Gao ◽  
Xi Yao
Author(s):  
Peng Wang ◽  
Zhongbin Pan ◽  
Weilin Wang ◽  
Jianxu Hu ◽  
Jinjun Liu ◽  
...  

High-performance electrostatic capacitors are in urgent demand owing to the rapidly development of advanced power electronic applications. However, polymer-based composite films with both high breakdown strength (Eb) and dielectric constant...


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2942
Author(s):  
Bhausaheb V. Tawade ◽  
Ikeoluwa E. Apata ◽  
Nihar Pradhan ◽  
Alamgir Karim ◽  
Dharmaraj Raghavan

The synthesis of polymer-grafted nanoparticles (PGNPs) or hairy nanoparticles (HNPs) by tethering of polymer chains to the surface of nanoparticles is an important technique to obtain nanostructured hybrid materials that have been widely used in the formulation of advanced polymer nanocomposites. Ceramic-based polymer nanocomposites integrate key attributes of polymer and ceramic nanomaterial to improve the dielectric properties such as breakdown strength, energy density and dielectric loss. This review describes the ”grafting from” and ”grafting to” approaches commonly adopted to graft polymer chains on NPs pertaining to nano-dielectrics. The article also covers various surface initiated controlled radical polymerization techniques, along with templated approaches for grafting of polymer chains onto SiO2, TiO2, BaTiO3, and Al2O3 nanomaterials. As a look towards applications, an outlook on high-performance polymer nanocomposite capacitors for the design of high energy density pulsed power thin-film capacitors is also presented.


Author(s):  
Jian Wang ◽  
Yunchuan Xie ◽  
Yifei Zhang ◽  
Biyun Peng ◽  
Qizheng Li ◽  
...  

Flory–Huggins theory combined with experimental tests and phase-field simulation proves that electrospinning improves the homogeneity and Eb in composite films, and MS can limit the ferroelectric relaxation of PVDF and significantly increase Ue and η.


2021 ◽  
pp. 095400832199352
Author(s):  
Wei Deng ◽  
Guanguan Ren ◽  
Wenqi Wang ◽  
Weiwei Cui ◽  
Wenjun Luo

Polymer composites with high dielectric constant and thermal stability have shown great potential applications in the fields relating to the energy storage. Herein, core-shell structured polyimide@BaTiO3 (PI@BT) nanoparticles were fabricated via in-situ polymerization of poly(amic acid) (PAA) and the following thermal imidization, then utilized as fillers to prepare PI composites. Increased dielectric constant with suppressed dielectric loss, and enhanced energy density as well as heat resistance were simultaneously realized due to the presence of PI shell between BT nanoparticles and PI matrix. The dielectric constant of PI@BT/PI composites with 55 wt% fillers increased to 15.0 at 100 Hz, while the dielectric loss kept at low value of 0.0034, companied by a high energy density of 1.32 J·cm−3, which was 2.09 times higher than the pristine PI. Moreover, the temperature at 10 wt% weight loss reached 619°C, demonstrating the excellent thermostability of PI@BT/PI composites. In addition, PI@BT/PI composites exhibited improved breakdown strength and toughness as compared with the BT/PI composites due to the well dispersion of PI@BT nanofillers and the improved interfacial interactions between nanofillers and polymer matrix. These results provide useful information for the structural design of high-temperature dielectric materials.


2020 ◽  
Author(s):  
Sheng Tong

Abstract The paper introduces a model of dielectric breakdown strength. The model integrated thermal breakdown and defect models, representing the relationship between the electric field of ferroelectric films and dimensional parameters and operating temperature. This model is verified with experimental results of the lead lanthanum zirconate titanate (PLZT) films of various film thickness (d = 0.8 – 3 mm), electrode area (A = 0.0020 – 25 mm2) tested under a range of operating temperature (T = 300 – 400 K) with satisfying fitting results. Also learned is a relationship that the recoverable electric energy density is directly proportional to the square of breakdown electric field. This relationship is found viable in predicting the electric energy density in terms of variables of d, A, and T for the PLZT films.


RSC Advances ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 7065-7072
Author(s):  
Jianxin Zhang ◽  
Jiachen Ma ◽  
Luqing Zhang ◽  
Chuanyong Zong ◽  
Anhou Xu ◽  
...  

Preparation of high-performance dielectric composite films using PDFMA@BT hybrid nanoparticles as fillers.


2020 ◽  
Vol 13 (06) ◽  
pp. 2051042
Author(s):  
Zhong Yang ◽  
Jing Wang ◽  
Long He ◽  
Chaoyong Deng ◽  
Kongjun Zhu

Flexible dielectric capacitors are becoming shining stars in modern electronic devices. Ceramic particles with large dielectric constants and benign compatibility are attractive candidates to enhance the energy storage density of pristine polymer capacitors while guaranteeing their flexibility. In this work, double-shell structure of Al2O3 (AO) and dopamine (PDA) were successively coated on the Nd-doped BaTiO3 (NBT) particles and then introduced into the Poly(vinylidene fluoride) (PVDF) matrix. Obvious enhancement in dielectric constants was observed while the dielectric loss remained nearly constant. For the composite films with 1–4[Formula: see text]vol.% NBT@AO@PDA NPs, the maximum energy density of 9.1[Formula: see text]J/cm3 and energy efficiency of 65% was achieved at 430[Formula: see text]MV/m in the sample with 1[Formula: see text]vol.% filling ratio, which are 1.4 and 1.3 times larger than those of pristine PVDF at 450[Formula: see text]MV/m. The finite element simulation reveals the effective relief of the electric field concentration in the composite film induced by the AO and PDA layers. The greater improvement in the energy storage performance could be anticipated if the dispersity of NBT@AO@PDA NPs was further improved.


Sign in / Sign up

Export Citation Format

Share Document