Embedded ZnO nanoparticles in N-doped carbon nanoplate arrays grown on N-doped carbon paper as low-cost and lightweight electrodes for high-performance lithium storage

2020 ◽  
Vol 46 (11) ◽  
pp. 17767-17775 ◽  
Author(s):  
Xueshuang Zhu ◽  
Daoping Cai ◽  
Zhixiang Cui ◽  
Qianting Wang ◽  
Hongbing Zhan
2020 ◽  
Vol 4 (9) ◽  
pp. 4780-4788 ◽  
Author(s):  
Qiang Ma ◽  
Jiakang Qu ◽  
Xiang Chen ◽  
Zhuqing Zhao ◽  
Yan Zhao ◽  
...  

Low-cost feedstocks and rationally designed structures are the keys to determining the lithium-storage performance and practical applications of Si-based anodes for lithium-ion batteries (LIBs).


2019 ◽  
Vol 7 (40) ◽  
pp. 23019-23027 ◽  
Author(s):  
Zongfeng Sha ◽  
Shengqiang Qiu ◽  
Qing Zhang ◽  
Zhiyong Huang ◽  
Xun Cui ◽  
...  

A solvothermal polymerization approach to graphene/poly(methyl methacrylate) thermoplastic nanocomposites as low-cost alternative anode materials with superior lithium storage capability.


Author(s):  
Xinhui Zhao ◽  
Qingqing Ren

Abstract Low-cost Fe-based electrode materials for Li-ion energy storage devices attract lots of attention. In this work, porous Fe2O3 nanoparticles are synthesized by a simple route. Firstly, their lithium storage performance is investigated by assembling half-cell configurations with Li foil as the counter electrode. During initial dozens of cycles, capacities of Fe2O3 nanoparticles fall off rapidly, which is related to continuous growth of solid electrolyte interphase (SEI). Amazingly, the capacities show an upturn in extended cycles. The pseudocapacitance of activated capacities is revealed by executing cyclic voltammetry (CV) tests at various scan rates on 500-cycled Fe2O3 electrodes. Based on electrochemical results, we speculate this special cycling performance of Fe2O3 nanoparticles may be associated with reversible electrochemical processes of SEI under the catalysis of nano-size Fe. Further, 500-cycled Fe2O3 anodes are reassembled with activated carbon cathodes for Li-ion capacitors (LICs). The LICs show energy densities of 110 Wh kg−1 at power densities of 136 W kg−1, and 72.8% capacity retention after 3000 cycles at 2 A g−1. We report an interesting electrochemical behavior of porous Fe2O3 nanoparticles, and a high-performance LIC based on activated Fe2O3 as an anode. This work may offer a new understanding for lithium storage capacities of metal oxide anodes.


2016 ◽  
Vol 848 ◽  
pp. 99-102 ◽  
Author(s):  
Theerapong Santhaveesuk ◽  
Kwunta Siwawongkasem ◽  
Siriwimon Pommek ◽  
Supab Choopun

ZnO nanoparticles were successfully synthesized by a low cost co-precipitation method using zinc nitrate and sodium hydroxide as the raw materials. It was observed that the synthesized temperatures greatly effect on the size of ZnO nanoparticles. The lower synthesized temperatures resulted in the smaller nanoparticles. By adjusting the mole ratio of sodium hydroxide, the size of ZnO nanoparticles was also changed. The smallest ZnO particles was 47 nm obtained with 0.7 mole of sodium hydroxide. The smallest ZnO nanoparticles from each synthesized temperatures were fabricated as humidity sensor, showing an impressive performance under different relative humidity (17-94% RH). It should be noticed that the ZnO nanoparticles humidity sensor synthesized at 75 °C exhibited high response for 2 times higher than that of synthesized at 95 °C. This is attributed to the higher surface area of ZnO nanoparticles for absorbed water molecule.


2020 ◽  
Vol 4 (3) ◽  
pp. 881-890 ◽  
Author(s):  
Lina Xu ◽  
Haiyang Ding ◽  
Xiaohua Yang ◽  
Jiujuan Yan ◽  
Shouhai Li ◽  
...  

A high-performance bifunctional oxygen reduction and lithium storage material is developed using low-cost chitosan as the nitrogen and carbon sources by one-step solvothermal method with the assistance of gallic acid as “molecular nucleating agent”.


2020 ◽  
Vol 16 (3) ◽  
pp. 246-253
Author(s):  
Marcin Gackowski ◽  
Marcin Koba ◽  
Stefan Kruszewski

Background: Spectrophotometry and thin layer chromatography have been commonly applied in pharmaceutical analysis for many years due to low cost, simplicity and short time of execution. Moreover, the latest modifications including automation of those methods have made them very effective and easy to perform, therefore, the new UV- and derivative spectrophotometry as well as high performance thin layer chromatography UV-densitometric (HPTLC) methods for the routine estimation of amrinone and milrinone in pharmaceutical formulation have been developed and compared in this work since European Pharmacopoeia 9.0 has yet incorporated in an analytical monograph a method for quantification of those compounds. Methods: For the first method the best conditions for quantification were achieved by measuring the lengths between two extrema (peak-to-peak amplitudes) 252 and 277 nm in UV spectra of standard solutions of amrinone and a signal at 288 nm of the first derivative spectra of standard solutions of milrinone. The linearity between D252-277 signal and concentration of amironone and 1D288 signal of milrinone in the same range of 5.0-25.0 μg ml/ml in DMSO:methanol (1:3 v/v) solutions presents the square correlation coefficient (r2) of 0,9997 and 0.9991, respectively. The second method was founded on HPTLC on silica plates, 1,4-dioxane:hexane (100:1.5) as a mobile phase and densitometric scanning at 252 nm for amrinone and at 271 nm for milrinone. Results: The assays were linear over the concentration range of 0,25-5.0 μg per spot (r2=0,9959) and 0,25-10.0 μg per spot (r2=0,9970) for amrinone and milrinone, respectively. The mean recoveries percentage were 99.81 and 100,34 for amrinone as well as 99,58 and 99.46 for milrinone, obtained with spectrophotometry and HPTLC, respectively. Conclusion: The comparison between two elaborated methods leads to the conclusion that UV and derivative spectrophotometry is more precise and gives better recovery, and that is why it should be applied for routine estimation of amrinone and milrinone in bulk drug, pharmaceutical forms and for therapeutic monitoring of the drug.


Sign in / Sign up

Export Citation Format

Share Document