General solution of the dispersion model for a one-dimensional stirred flow system using Danckwerts’ boundary conditions

2004 ◽  
Vol 59 (14) ◽  
pp. 3013-3020 ◽  
Author(s):  
Vladimı́r Kudrna ◽  
Milan Jahoda ◽  
Njabulo Siyakatshana ◽  
Jiřina Čermáková ◽  
Václav Machoň
1996 ◽  
Vol 61 (2) ◽  
pp. 242-258 ◽  
Author(s):  
Vladimír Kudrna ◽  
Libor Vejmola ◽  
Pavel Hasal

Recently developed stochastic model of a one-dimensional flow-through chemical reactor is extended in this paper also to the non-isothermal case. The model enables the evaluation of concentration and temperature profiles along the reactor. The results are compared with the commonly used one-dimensional dispersion model with Danckwerts' boundary conditions. The stochastic model also enables to evaluate a value of the segregation index.


1985 ◽  
Vol 40 (7) ◽  
pp. 736-747
Author(s):  
Sang H. Kim ◽  
Vladimir Hlavacek

The dynamic behavior of an autocatalytic reaction with a product inhibition term is studied in a flow system. A unique steady state exists in the continuous tank reactor. Linear stability analysis predicts either a stable node, a focus or an unstable saddle-focus. Sustained oscillations around the unstable focus can occur for high values of the Damköhler number (Da). In the distributed system, travelling, standing or complex oscillatory waves are detected. For a low value of Da, travelling waves with a pseudo-constant pattern are observed. With an intermediate value of Da, single or multiple standing waves are obtained. The temporal behavior indicates also the appearance of retriggering or echo waves. For a high value of Da, both single peak and complex multipeak oscillations are found. In the cell model, both regular oscillations near the inlet and chaotic behavior downstream are observed. In the dispersion model, higher Peclet numbers (Pe) eliminate the oscillations. The spatial profile shows a train of pulsating waves for the discrete model and a single pulsating or solitary wave for the continuous model.


2020 ◽  
Vol 75 (8) ◽  
pp. 713-725 ◽  
Author(s):  
Guenbo Hwang

AbstractInitial-boundary value problems for the one-dimensional linear advection–dispersion equation with decay (LAD) are studied by utilizing a unified method, known as the Fokas method. The method takes advantage of the spectral analysis of both parts of Lax pair and the global algebraic relation coupling all initial and boundary values. We present the explicit analytical solution of the LAD equation posed on the half line and a finite interval with general initial and boundary conditions. In addition, for the case of periodic boundary conditions, we show that the solution of the LAD equation is asymptotically t-periodic for large t if the Dirichlet boundary datum is periodic in t. Furthermore, it can be shown that if the Dirichlet boundary value is asymptotically periodic for large t, then so is the unknown Neumann boundary value, which is uniquely characterized in terms of the given asymptotically periodic Dirichlet boundary datum. The analytical predictions for large t are compared with numerical results showing the excellent agreement.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Przemysław Kościk ◽  
Arkadiusz Kuroś ◽  
Adam Pieprzycki ◽  
Tomasz Sowiński

AbstractWe derive and describe a very accurate variational scheme for the ground state of the system of a few ultra-cold bosons confined in one-dimensional traps of arbitrary shapes. It is based on assumption that all inter-particle correlations have two-body nature. By construction, the proposed ansatz is exact in the noninteracting limit, exactly encodes boundary conditions forced by contact interactions, and gives full control on accuracy in the limit of infinite repulsions. We show its efficiency in a whole range of intermediate interactions for different external potentials. Our results manifest that for generic non-parabolic potentials mutual correlations forced by interactions cannot be captured by distance-dependent functions.


2003 ◽  
Vol 2003 (43) ◽  
pp. 2735-2746 ◽  
Author(s):  
Ekaterina T. Kolkovska

We consider the one-dimensional Burgers equation perturbed by a white noise term with Dirichlet boundary conditions and a non-Lipschitz coefficient. We obtain existence of a weak solution proving tightness for a sequence of polygonal approximations for the equation and solving a martingale problem for the weak limit.


Author(s):  
Tirivanhu Chinyoka ◽  
Daniel Oluwole Makinde

Purpose – The purpose of this paper is to examine the unsteady pressure-driven flow of a reactive third-grade non-Newtonian fluid in a channel filled with a porous medium. The flow is subjected to buoyancy, suction/injection asymmetrical and convective boundary conditions. Design/methodology/approach – The authors assume that exothermic chemical reactions take place within the flow system and that the asymmetric convective heat exchange with the ambient at the surfaces follow Newton’s law of cooling. The authors also assume unidirectional suction injection flow of uniform strength across the channel. The flow system is modeled via coupled non-linear partial differential equations derived from conservation laws of physics. The flow velocity and temperature are obtained by solving the governing equations numerically using semi-implicit finite difference methods. Findings – The authors present the results graphically and draw qualitative and quantitative observations and conclusions with respect to various parameters embedded in the problem. In particular the authors make observations regarding the effects of bouyancy, convective boundary conditions, suction/injection, non-Newtonian character and reaction strength on the flow velocity, temperature, wall shear stress and wall heat transfer. Originality/value – The combined fluid dynamical, porous media and heat transfer effects investigated in this paper have to the authors’ knowledge not been studied. Such fluid dynamical problems find important application in petroleum recovery.


2018 ◽  
Vol 145 ◽  
pp. 01009 ◽  
Author(s):  
Vassil M. Vassilev ◽  
Daniel M. Dantchev ◽  
Peter A. Djondjorov

In this article we consider a critical thermodynamic system with the shape of a thin film confined between two parallel planes. It is assumed that the state of the system at a given temperature and external ordering field is described by order-parameter profiles, which minimize the one-dimensional counterpart of the standard ϕ4 Ginzburg–Landau Hamiltonian and meet the so-called Neumann – Neumann boundary conditions. We give analytic representation of the extremals of this variational problem in terms ofWeierstrass elliptic functions. Then, depending on the temperature and ordering field we determine the minimizers and obtain the phase diagram in the temperature-field plane.


Sign in / Sign up

Export Citation Format

Share Document