Efficient time-extrapolation of single- and multiphase simulations by transport based recurrence CFD (rCFD)

2018 ◽  
Vol 188 ◽  
pp. 65-83 ◽  
Author(s):  
S. Pirker ◽  
T. Lichtenegger
Keyword(s):  
2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Donald Marolf ◽  
Henry Maxfield

AbstractWe reformulate recent insights into black hole information in a manner emphasizing operationally-defined notions of entropy, Lorentz-signature descriptions, and asymptotically flat spacetimes. With the help of replica wormholes, we find that experiments of asymptotic observers are consistent with black holes as unitary quantum systems, with density of states given by the Bekenstein-Hawking formula. However, this comes at the cost of superselection sectors associated with the state of baby universes. Spacetimes studied by Polchinski and Strominger in 1994 provide a simple illustration of the associated concepts and techniques, and we argue them to be a natural late-time extrapolation of replica wormholes. The work aims to be self-contained and, in particular, to be accessible to readers who have not yet mastered earlier formulations of the ideas above.


Geophysics ◽  
1983 ◽  
Vol 48 (11) ◽  
pp. 1514-1524 ◽  
Author(s):  
Edip Baysal ◽  
Dan D. Kosloff ◽  
John W. C. Sherwood

Migration of stacked or zero‐offset sections is based on deriving the wave amplitude in space from wave field observations at the surface. Conventionally this calculation has been carried out through a depth extrapolation. We examine the alternative of carrying out the migration through a reverse time extrapolation. This approach may offer improvements over existing migration methods, especially in cases of steeply dipping structures with strong velocity contrasts. This migration method is tested using appropriate synthetic data sets.


2016 ◽  
Vol 31 (5) ◽  
pp. 1409-1416 ◽  
Author(s):  
Shigenori Otsuka ◽  
Shunji Kotsuki ◽  
Takemasa Miyoshi

Abstract Space–time extrapolation is a key technique in precipitation nowcasting. Motions of patterns are estimated using two or more consecutive images, and the patterns are extrapolated in space and time to obtain their future patterns. Applying space–time extrapolation to satellite-based global precipitation data will provide valuable information for regions where ground-based precipitation nowcasts are not available. However, this technique is sensitive to the accuracy of the motion vectors, and over the past few decades, previous studies have investigated methods for obtaining reliable motion vectors such as variational techniques. In this paper, an alternative approach applying data assimilation to precipitation nowcasting is proposed. A prototype extrapolation system is implemented with the local ensemble transform Kalman filter and is tested with the Japan Aerospace Exploration Agency’s Global Satellite Mapping of Precipitation (GSMaP) product. Data assimilation successfully improved the global precipitation nowcasting with the real-case GSMaP data.


2017 ◽  
Vol 211 (3) ◽  
pp. 1478-1493 ◽  
Author(s):  
Junzhe Sun ◽  
Sergey Fomel ◽  
Yanadet Sripanich ◽  
Paul Fowler

Geophysics ◽  
1994 ◽  
Vol 59 (4) ◽  
pp. 597-609 ◽  
Author(s):  
Wen‐Fong Chang ◽  
George A. McMechan

By combining and extending previous algorithms for 2-D prestack elastic migration and 3-D prestack acoustic migration, a full 3-D elastic prestack depth migration algorithm is developed. Reverse‐time extrapolation of the recorded data is by 3-D elastic finite differences; computation of the image time for each point in the 3-D volume is by 3-D acoustic finite differences. The algorithm operates on three‐component, vector‐wavefield common‐source data and produces three‐component vector reflectivity distributions. Converted P‐to‐S reflections are automatically imaged with the primary P‐wave reflections. There are no dip restrictions as the full wave equation is used. The algorithm is illustrated by application to synthetic data from three models; a flat reflector, a dipping truncated wedge overlying a flat reflector, and the classical French double dome and fault model.


Geophysics ◽  
2009 ◽  
Vol 74 (5) ◽  
pp. H27-H33 ◽  
Author(s):  
Jun Ji

To reduce the migration artifacts arising from incomplete data or inaccurate operators instead of migrating data with the adjoint of the forward-modeling operator, a least-squares migration often is considered. Least-squares migration requires a forward-modeling operator and its adjoint. In a derivation of the mathematically correct adjoint operator to a given forward-time-extrapolation modeling operator, the exact adjoint of the derived operator is obtained by formulating an explicit matrix equation for the forward operation and transposing it. The programs that implement the exact adjoint operator pair are verified by the dot-product test. The derived exact adjoint operator turns out to differ from the conventional reverse-time-migration (RTM) operator, an implementation of wavefield extrapolation backward in time. Examples with synthetic data show that migration using the exact adjoint operator gives similar results for a conventional RTM operator and that least-squares RTM is quite successful in reducing most migration artifacts. The least-squares solution using the exact adjoint pair produces a model that fits the data better than one using a conventional RTM operator pair.


1994 ◽  
Vol 3 (5) ◽  
pp. 342-352 ◽  
Author(s):  
SM Burns ◽  
JE Burns ◽  
JD Truwit

BACKGROUND: Despite extensive data acquired in the area of weaning, clinicians still struggle with the questions of how and when to begin the process. Clinical weaning indices, designed to predict weaning potential, are often difficult to use. They provide an answer at a specific time; extrapolation to the weaning process is rarely possible. No single index has proven to be superior. OBJECTIVES: To test the efficacy of five clinical weaning indices (Burns Weaning Assessment Program; Weaning Index; frequency tidal volume ratio; compliance, resistance, oxygenation and pressure index; and negative inspiratory pressure) at regular intervals during withdrawal of ventilatory support and to determine threshold levels for the program. METHODS: A prospective convenience sample consisted of 37 adult critical care patients requiring mechanical ventilation for at least 7 days and identified as stable and ready to wean. Data were collected on all weaning indices every other day until the patient was weaned. RESULTS: With the exception of the Burns Weaning Assessment Program, weaning indices did not change significantly from preweaning scores. Furthermore, the results failed to demonstrate that any of the five clinical weaning indices have strong predictive power related to weaning trial outcomes, although all the indices had negative predictive values that may be helpful in predicting unsuccessful weaning trials. CONCLUSIONS: The results of this study suggest that the process of weaning may be enhanced by comprehensive, systematic approaches and that clinical weaning indices like the Burns Weaning Assessment Program might best serve as tools to track trends in progress, keep care planning on target, and prevent unsuccessful weaning trials.


Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. T103-T122 ◽  
Author(s):  
Yulang Wu ◽  
George A. McMechan

A challenging outstanding problem in reverse time extrapolation is recovering accurate amplitudes at reflectors from the receiver wavefield. Various migrations have been developed to produce accurate image locations rather than correct amplitude information because of inadequate compensation of attenuation, dispersion, and transmission losses. We have evaluated the requirements, and determined the theoretical feasibility, of true amplitude recovery of 2D acoustic and elastic seismic data by using the analytic Zoeppritz equations for plane-wave reflection and transmission coefficients. Then, we used synthetic acoustic and elastic wavefield data generated by elastodynamic finite differences to verify the recovery, in the reverse time propagation, of spherical waves and illustrated the salient differences between the incident wavefields reconstructed from reflection data only and from the combination of reflection and transmission data. These examples quantitatively verify that recovering an incident plane or a spherical wave requires the reverse time propagation of all reflections and transmissions in a model with the correct velocity and density. Accurate reconstruction of an incident wave is not possible by backward propagation of only reflections. As an application, we removed downgoing internal multiple reflections generated by upgoing waves incident at reflectors shallower than a horizontal well, in which geophones are deployed. The subtraction of the downgoing reflection involves wavefield reconstruction at depths shallower than the horizontal well and separation of upgoing and downgoing wavefields. This approach assumes that the correct acoustic (or elastic) velocity and density models are available in, and shallower than, the layer where the horizontal well is located. Incident-wave reconstruction works equally well for smooth models, as for models with sharp boundaries. Uncertainties in the model used for reconstruction, and incompleteness of the data aperture are propagated into the equivalent uncertainties, and incompleteness of the reconstruction.


2012 ◽  
Vol 12 (3) ◽  
pp. 777-784 ◽  
Author(s):  
P. Horton ◽  
M. Jaboyedoff ◽  
R. Metzger ◽  
C. Obled ◽  
R. Marty

Abstract. An adaptation technique based on the synoptic atmospheric circulation to forecast local precipitation, namely the analogue method, has been implemented for the western Swiss Alps. During the calibration procedure, relevance maps were established for the geopotential height data. These maps highlight the locations were the synoptic circulation was found of interest for the precipitation forecasting at two rain gauge stations (Binn and Les Marécottes) that are located both in the alpine Rhône catchment, at a distance of about 100 km from each other. These two stations are sensitive to different atmospheric circulations. We have observed that the most relevant data for the analogue method can be found where specific atmospheric circulation patterns appear concomitantly with heavy precipitation events. Those skilled regions are coherent with the atmospheric flows illustrated, for example, by means of the back trajectories of air masses. Indeed, the circulation recurrently diverges from the climatology during days with strong precipitation on the southern part of the alpine Rhône catchment. We have found that for over 152 days with precipitation amount above 50 mm at the Binn station, only 3 did not show a trajectory of a southerly flow, meaning that such a circulation was present for 98% of the events. Time evolution of the relevance maps confirms that the atmospheric circulation variables have significantly better forecasting skills close to the precipitation period, and that it seems pointless for the analogue method to consider circulation information days before a precipitation event as a primary predictor. Even though the occurrence of some critical circulation patterns leading to heavy precipitation events can be detected by precursors at remote locations and 1 week ahead (Grazzini, 2007; Martius et al., 2008), time extrapolation by the analogue method seems to be rather poor. This would suggest, in accordance with previous studies (Obled et al., 2002; Bontron and Obled, 2005), that time extrapolation should be done by the Global Circulation Model, which can process atmospheric variables that can be used by the adaptation method.


Sign in / Sign up

Export Citation Format

Share Document