Controllable superposed flow fields based on eccentric cylinder flow

2021 ◽  
pp. 116800
Author(s):  
Xianrong Liang ◽  
Yunfeng Zhao ◽  
Wulei Cai ◽  
Honghui Chen ◽  
Heng Wu ◽  
...  
Author(s):  
D. Furey ◽  
P. Atsavapranee ◽  
K. Cipolla

Stereo Particle Image velocimetry data was collected over high aspect ratio flexible cylinders (L/a = 1.5 to 3 × 105) to evaluate the axial development of the turbulent boundary layer where the boundary layer thickness becomes significantly larger than the cylinder diameter (δ/a>>1). The flexible cylinders are approximately neutrally buoyant and have an initial length of 152 m and radii of 0.45 mm and 1.25 mm. The cylinders were towed at speeds ranging from 3.8 to 15.4 m/sec in the David Taylor Model Basin. The analysis of the SPIV data required a several step procedure to evaluate the cylinder boundary flow. First, the characterization of the flow field from the towing strut is required. This evaluation provides the residual mean velocities and turbulence levels caused by the towing hardware at each speed and axial location. These values, called tare values, are necessary for comparing to the cylinder flow results. Second, the cylinder flow fields are averaged together and the averaged tare fields are subtracted out to remove strut-induced ambient flow effects. Prior to averaging, the cylinder flow fields are shifted to collocate the cylinder within the field. Since the boundary layer develops slowly, all planes of data occurring within each 10 meter increment of the cylinder length are averaged together to produce the mean boundary layer flow. Corresponding fields from multiple runs executed using the same experimental parameters are also averaged. This flow is analyzed to evaluate the level of axisymmetry in the data and determine if small changes in cylinder angle affect the mean flow development. With axisymmetry verified, the boundary flow is further averaged azimuthally around the cylinder to produce mean boundary layer profiles. Finally, the fluctuating velocity levels are evaluated for the flow with the cylinder and compared to the fluctuating velocity levels in the tare data. This paper will first discuss the data analysis techniques for the tare data and the averaging methods implemented. Second, the data analysis considerations will be presented for the cylinder data and the averaging and cylinder tracking techniques. These results are used to extract relevant boundary layer parameters including δ, δ* and θ. Combining these results with wall shear and momentum thickness values extracted from averaged cylinder drag data, the boundary layer can be well characterized.


2020 ◽  
pp. 146808742091724
Author(s):  
Li Shen ◽  
Kwee-Yan Teh ◽  
Penghui Ge ◽  
Fengnian Zhao ◽  
David LS Hung

In-cylinder flow fields and their temporal evolution have strong effect on the combustion dynamics of internal combustion engines. Proper orthogonal decomposition is a statistical tool to analyze these flow fields by decomposing them into flow patterns (known as proper orthogonal decomposition modes) and corresponding coefficients with their contribution to the ensemble flow kinetic energy successively maximized. However, neither of the two prevailing proper orthogonal decomposition approaches satisfactorily describes the temporal behavior of the flow fields. The phase-dependent proper orthogonal decomposition approach is limited to analyzing spatial flow structures at a certain engine phase. The phase-invariant proper orthogonal decomposition approach attempts to account for both spatial and temporal variations, but at the expense of diminished statistical and physical significance. In this article, we seek to understand the temporal behavior of tumble flow fields by analyzing the evolution of low-order phase-dependent proper orthogonal decomposition modes over multiple crank angles. The concept of relevance index is first generalized to enable comparison between two vectorial fields of different sizes. This metric is then used to quantify the directional similarities between the two lowest proper orthogonal decomposition modes obtained at sequential crank angles. The mode shapes are observed to evolve gradually and naturally over most crank angles, but change significantly at certain crank angles during intake. The results indicate that each of the low-order modes features strong velocity fluctuations in different regions of the tumble plane, and different numbers of modes are needed to represent the dominant features of tumble flow at different engine phases. Based on this understanding, we propose to use the partial sum of those proper orthogonal decomposition modes and their coefficients to form a low-order approximation model of the in-cylinder tumble flow, in order to reduce flow field complexity and noise while retaining its major spatial and temporal features.


Author(s):  
Mengqi Liu ◽  
Fengnian Zhao ◽  
Xuesong Li ◽  
Min Xu ◽  
Zongyu Yue ◽  
...  

Abstract In-cylinder flow fields make significant impacts on the fuel atomization, fuel mixture formation, and combustion process in spark ignition direct injection (SIDI) engines. In recent years, model-based simulation approaches are preferred in regard to investigating the transient in-cylinder flow field characteristics. Most commonly, the simulation models are validated using single representative flow field at a typical crank angle measured by particle image velocimetry (PIV). However, it provides only limited knowledge about the flow field which is highly three-dimensional and of transient nature. In this study, crank angle-resolved PIV measurements are conducted on three distinct planes inside the cylinder to capture the transient process of flow field characteristics which vary with the crank angle. These three planes consist of one tumble plane through the spark plug tip, one tumble plane along two intake ports, and one swirl plane at 30 mm below the cylinder head. Large eddy simulation (LES) is employed for the numerical computations using the CONVERGE codes. On the basis of large datasets for both temporal and spatial domains, a multi-index systematic validation approach is conducted. Crank angle-resolved calculations of global indices and local indices are implemented using the flow fields velocity data obtained from both PIV and LES on select planes. Global indices reveal the trends in similarities of different crank angle degrees and locations, while local indices give the detail comparison results. In summary, with the systematic multi-index validation approach, the crucial crank angle degrees and locations for model verification will be detected. Furthermore, the corresponding critical flow features are analyzed. Practical guideline of flow field validation is proposed.


Author(s):  
Kwee-Yan Teh ◽  
Penghui Ge ◽  
Fengnian Zhao ◽  
David L. S. Hung

Abstract Engine in-cylinder flow varies from cycle to cycle, which contributes to variation of the mixing and combustion processes between fuel and air. Such flow field cyclic variability at the macroscopic scale is distinct from random fluctuations at the microscopic scale about the ensemble mean velocity field due to turbulence. At the extreme, the mean velocity field may bear no resemblance to any instantaneous flow field within the ensemble. Rather, these instantaneous fields may appear multimodal. Yet previous attempts to define and identify the flow modes were either qualitative (by visual inspection), or based on strict point-by-point velocity difference between two flow fields. The former approach is clearly subjective; the latter does not accommodate translational and rotational variations of in-cylinder flow patterns relative to a flow mode. Such spatial variations, in location and orientation, of the flow patterns can be quantified by the technique of complex moment normalization. The algebraic properties of complex moments are also intimately related to the geometric and physical properties of two-dimensional/two-component flow fields. In this paper, we take the normalized moments as flow field attributes for further cluster analysis. This analysis approach is demonstrated using a set of in-cylinder flow fields obtained by high-speed particle image velocimetry on a swirl plane of a research optical engine operating under low intake swirl setting. The resulting classification of the flow fields into several clusters (flow modes) are discussed, and the potential and limitations of the analysis approach are appraised.


2019 ◽  
Vol 22 (1) ◽  
pp. 257-272 ◽  
Author(s):  
Alexander Hanuschkin ◽  
Steffen Schober ◽  
Johannes Bode ◽  
Jürgen Schorr ◽  
Benjamin Böhm ◽  
...  

Cycle-to-cycle variations in an optically accessible four-stroke direct injection spark-ignition gasoline engine are investigated using high-speed scanning particle image velocimetry and in-cylinder pressure measurements. Particle image velocimetry allows to measure in-cylinder flow fields at high spatial and temporal resolution. Binary classifiers are used to predict combustion cycles of high indicated mean effective pressure based on in-cylinder flow features and engineered tumble features obtained during the intake and the compression stroke. Basic in-cylinder flow features of the mid-cylinder plane are sufficient to predict combustion cycles of high indicated mean effective pressure as early as 180 degree crank angle before the top dead center at 0 degree crank angle. Engineered characteristic tumble features derived from the flow field are not superior to the basic flow features. The results are independent of the tested machine learning method (multilayer perceptron and boosted decision trees) and robust to hyper-parameter selection.


2004 ◽  
Author(s):  
Oliver Dingel ◽  
Joern Kahrstedt ◽  
Kai Behnk ◽  
Stefan Zuelch ◽  
Thomas Seidel
Keyword(s):  

2020 ◽  
pp. 146808742097414
Author(s):  
Daniel Dreher ◽  
Marius Schmidt ◽  
Cooper Welch ◽  
Sara Ourza ◽  
Samuel Zündorf ◽  
...  

Machine learning (ML) models based on a large data set of in-cylinder flow fields of an IC engine obtained by high-speed particle image velocimetry allow the identification of relevant flow structures underlying cycle-to-cycle variations of engine performance. To this end, deep feature learning is employed to train ML models that predict cycles of high and low in-cylinder maximum pressure. Deep convolutional autoencoders are self-supervised-trained to encode flow field features in low dimensional latent space. Without the limitations ascribable to manual feature engineering, ML models based on these learned features are able to classify high energy cycles already from the flow field during late intake and the compression stroke as early as 290 crank angle degrees before top dead center ([Formula: see text]) with a mean accuracy above chance level. The prediction accuracy from [Formula: see text] to [Formula: see text] is comparable to baseline ML approaches utilizing an extensive set of engineered features. Relevant flow structures in the compression stroke are revealed by feature analysis of ML models and are interpreted using conditional averaged flow quantities. This analysis unveils the importance of the horizontal velocity component of in-cylinder flows in predicting engine performance. Combining deep learning and conventional flow analysis techniques promises to be a powerful tool for ultimately revealing high-level flow features relevant to the prediction of cycle-to-cycle variations and further engine optimization.


2021 ◽  
Vol 33 (6) ◽  
pp. 067110
Author(s):  
Xianrong Liang ◽  
Wulei Cai ◽  
Honghui Chen ◽  
Yunfeng Zhao ◽  
Heng Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document