Discovery of cellular substrates of human RNA-decapping enzyme DCP2 using a stapled bicyclic peptide inhibitor

Author(s):  
Yang Luo ◽  
Jeremy A. Schofield ◽  
Zhenkun Na ◽  
Tanja Hann ◽  
Matthew D. Simon ◽  
...  
2020 ◽  
Vol 526 (2) ◽  
pp. 512-518
Author(s):  
Rui-Min Li ◽  
Ming-Nan Zhang ◽  
Qun-Ye Tang ◽  
Man-Gen Song

Leukemia ◽  
2017 ◽  
Vol 31 (7) ◽  
pp. 1622-1625 ◽  
Author(s):  
C Anadón ◽  
G van Tetering ◽  
H J Ferreira ◽  
C Moutinho ◽  
A Martínez-Cardús ◽  
...  

Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 513
Author(s):  
Florian Abele ◽  
Katharina Höfer ◽  
Patrick Bernhard ◽  
Julia Grawenhoff ◽  
Maximilian Seidel ◽  
...  

The complexity of the transcriptome is governed by the intricate interplay of transcription, RNA processing, translocation, and decay. In eukaryotes, the removal of the 5’-RNA cap is essential for the initiation of RNA degradation. In addition to the canonical 5’-N7-methyl guanosine cap in eukaryotes, the ubiquitous redox cofactor nicotinamide adenine dinucleotide (NAD) was identified as a new 5’-RNA cap structure in prokaryotic and eukaryotic organisms. So far, two classes of NAD-RNA decapping enzymes have been identified, namely Nudix enzymes that liberate nicotinamide mononucleotide (NMN) and DXO-enzymes that remove the entire NAD cap. Herein, we introduce 8-(furan-2-yl)-substituted NAD-capped-RNA (FurNAD-RNA) as a new research tool for the identification and characterization of novel NAD-RNA decapping enzymes. These compounds are found to be suitable for various enzymatic reactions that result in the release of a fluorescence quencher, either nicotinamide (NAM) or nicotinamide mononucleotide (NMN), from the RNA which causes a fluorescence turn-on. FurNAD-RNAs allow for real-time quantification of decapping activity, parallelization, high-throughput screening and identification of novel decapping enzymes in vitro. Using FurNAD-RNAs, we discovered that the eukaryotic glycohydrolase CD38 processes NAD-capped RNA in vitro into ADP-ribose-modified-RNA and nicotinamide and therefore might act as a decapping enzyme in vivo. The existence of multiple pathways suggests that the decapping of NAD-RNA is an important and regulated process in eukaryotes.


2020 ◽  
Author(s):  
Kai Mao ◽  
Peter Breen ◽  
Gary Ruvkun

AbstractRNA interference (RNAi) is an antiviral pathway common to many eukaryotes that detects and cleaves foreign nucleic acids. In mammals, mitochondrially localized proteins such as MAVS, RIG-I, and MDA5 mediate antiviral responses. Here, we report that mitochondrial dysfunction in Caenorhabditis elegans activates RNAi-directed silencing via induction of a pathway homologous to the mammalian RIG-I helicase viral response pathway. The induction of RNAi also requires the conserved RNA decapping enzyme EOL-1/DXO. The transcriptional induction of eol-1 requires DRH-1 as well as the mitochondrial unfolded protein response (UPRmt). Upon mitochondrial dysfunction, EOL-1 is concentrated into foci that depend on the transcription of mitochondrial RNAs that may form dsRNA, as has been observed in mammalian antiviral responses. The enhanced RNAi triggered by mitochondrial dysfunction contributes to the increase in longevity that is induced by mitochondrial dysfunction.


2015 ◽  
Vol 112 (22) ◽  
pp. 6967-6972 ◽  
Author(s):  
Anna V. Ignatochkina ◽  
Yuko Takagi ◽  
Yancheng Liu ◽  
Kyosuke Nagata ◽  
C. Kiong Ho

The 5′ terminus of trypanosome mRNA is protected by a hypermethylated cap 4 derived from spliced leader (SL) RNA. Trypanosoma brucei nuclear capping enzyme with cap guanylyltransferase and methyltransferase activities (TbCgm1) modifies the 5′-diphosphate RNA (ppRNA) end to generate an m7G SL RNA cap. Here we show that T. brucei cytoplasmic capping enzyme (TbCe1) is a bifunctional 5′-RNA kinase and guanylyltransferase that transfers a γ-phosphate from ATP to pRNA to form ppRNA, which is then capped by transfer of GMP from GTP to the RNA β-phosphate. A Walker A-box motif in the N-terminal domain is essential for the RNA kinase activity and is targeted preferentially to a SL RNA sequence with a 5′-terminal methylated nucleoside. Silencing of TbCe1 leads to accumulation of uncapped mRNAs, consistent with selective capping of mRNA that has undergone trans-splicing and decapping. We identify T. brucei mRNA decapping enzyme (TbDcp2) that cleaves m7GDP from capped RNA to generate pRNA, a substrate for TbCe1. TbDcp2 can also remove GDP from unmethylated capped RNA but is less active at a mature cap 4 end and thus may function in RNA cap quality surveillance. Our results establish the enzymology and relevant protein catalysts of a cytoplasmic recapping pathway that has broad implications for the functional reactivation of processed mRNA ends.


PLoS Biology ◽  
2020 ◽  
Vol 18 (12) ◽  
pp. e3000996
Author(s):  
Kai Mao ◽  
Peter Breen ◽  
Gary Ruvkun

RNA interference (RNAi) is an antiviral pathway common to many eukaryotes that detects and cleaves foreign nucleic acids. In mammals, mitochondrially localized proteins such as mitochondrial antiviral signaling (MAVS), retinoic acid-inducible gene I (RIG-I), and melanoma differentiation-associated protein 5 (MDA5) mediate antiviral responses. Here, we report that mitochondrial dysfunction in Caenorhabditis elegans activates RNAi-directed silencing via induction of a pathway homologous to the mammalian RIG-I helicase viral response pathway. The induction of RNAi also requires the conserved RNA decapping enzyme EOL-1/DXO. The transcriptional induction of eol-1 requires DRH-1 as well as the mitochondrial unfolded protein response (UPRmt). Upon mitochondrial dysfunction, EOL-1 is concentrated into foci that depend on the transcription of mitochondrial RNAs that may form double-stranded RNA (dsRNA), as has been observed in mammalian antiviral responses. Enhanced RNAi triggered by mitochondrial dysfunction is necessary for the increase in longevity that is induced by mitochondrial dysfunction.


1993 ◽  
Vol 268 (27) ◽  
pp. 20318-20326
Author(s):  
X Qiu ◽  
M Yin ◽  
K.P. Padmanabhan ◽  
J.L. Krstenansky ◽  
A Tulinsky
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document