scholarly journals Mitochondrial dysfunction induces RNA interference in C. elegans through a pathway homologous to the mammalian RIG-I antiviral response

PLoS Biology ◽  
2020 ◽  
Vol 18 (12) ◽  
pp. e3000996
Author(s):  
Kai Mao ◽  
Peter Breen ◽  
Gary Ruvkun

RNA interference (RNAi) is an antiviral pathway common to many eukaryotes that detects and cleaves foreign nucleic acids. In mammals, mitochondrially localized proteins such as mitochondrial antiviral signaling (MAVS), retinoic acid-inducible gene I (RIG-I), and melanoma differentiation-associated protein 5 (MDA5) mediate antiviral responses. Here, we report that mitochondrial dysfunction in Caenorhabditis elegans activates RNAi-directed silencing via induction of a pathway homologous to the mammalian RIG-I helicase viral response pathway. The induction of RNAi also requires the conserved RNA decapping enzyme EOL-1/DXO. The transcriptional induction of eol-1 requires DRH-1 as well as the mitochondrial unfolded protein response (UPRmt). Upon mitochondrial dysfunction, EOL-1 is concentrated into foci that depend on the transcription of mitochondrial RNAs that may form double-stranded RNA (dsRNA), as has been observed in mammalian antiviral responses. Enhanced RNAi triggered by mitochondrial dysfunction is necessary for the increase in longevity that is induced by mitochondrial dysfunction.

2020 ◽  
Author(s):  
Kai Mao ◽  
Peter Breen ◽  
Gary Ruvkun

AbstractRNA interference (RNAi) is an antiviral pathway common to many eukaryotes that detects and cleaves foreign nucleic acids. In mammals, mitochondrially localized proteins such as MAVS, RIG-I, and MDA5 mediate antiviral responses. Here, we report that mitochondrial dysfunction in Caenorhabditis elegans activates RNAi-directed silencing via induction of a pathway homologous to the mammalian RIG-I helicase viral response pathway. The induction of RNAi also requires the conserved RNA decapping enzyme EOL-1/DXO. The transcriptional induction of eol-1 requires DRH-1 as well as the mitochondrial unfolded protein response (UPRmt). Upon mitochondrial dysfunction, EOL-1 is concentrated into foci that depend on the transcription of mitochondrial RNAs that may form dsRNA, as has been observed in mammalian antiviral responses. The enhanced RNAi triggered by mitochondrial dysfunction contributes to the increase in longevity that is induced by mitochondrial dysfunction.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Priyanka Joshi ◽  
Michele Perni ◽  
Ryan Limbocker ◽  
Benedetta Mannini ◽  
Sam Casford ◽  
...  

AbstractAge-related changes in cellular metabolism can affect brain homeostasis, creating conditions that are permissive to the onset and progression of neurodegenerative disorders such as Alzheimer’s and Parkinson’s diseases. Although the roles of metabolites have been extensively studied with regard to cellular signaling pathways, their effects on protein aggregation remain relatively unexplored. By computationally analysing the Human Metabolome Database, we identified two endogenous metabolites, carnosine and kynurenic acid, that inhibit the aggregation of the amyloid beta peptide (Aβ) and rescue a C. elegans model of Alzheimer’s disease. We found that these metabolites act by triggering a cytosolic unfolded protein response through the transcription factor HSF-1 and downstream chaperones HSP40/J-proteins DNJ-12 and DNJ-19. These results help rationalise previous observations regarding the possible anti-ageing benefits of these metabolites by providing a mechanism for their action. Taken together, our findings provide a link between metabolite homeostasis and protein homeostasis, which could inspire preventative interventions against neurodegenerative disorders.


2021 ◽  
Author(s):  
Jianzhi Zhao ◽  
Hongying Fu ◽  
Hengda Zhou ◽  
Xuecong Ren ◽  
Yuanyuan Wang ◽  
...  

Tissue damage elicits a rapid innate immune response that is essential for efficient wound healing and survival of metazoans. It is well known that p38 MAPK kinase, TGF-β, and hemidesmosome signaling pathways have been involved in wounding-induced innate immunity in C. elegans. Here, we find that loss of function of ATFS-1 increased innate immune response while an elevated level of mitochondrial unfolded protein response (mitoUPR) inhibits the innate immune response upon epidermal wounding. Epidermal wounding triggers the nucleus export of ATFS-1 and inhibits themitoUPR in C. elegans epidermis. Moreover, genetic analysis suggests that ATFS-1 functions upstream of the p38 MAP kinase, TGF-β, and DAF-16 signaling pathways in regulating AMPs induction. Thus, our results suggest that the mitoUPR function as an intracellular signal required to fine-tune innate immune response after tissue damage.


2018 ◽  
Author(s):  
Ji Zha ◽  
Jasmine Alexander-Floyd ◽  
Tali Gidalevitz

AbstractDifferentiation of secretory cells leads to sharp increases in protein synthesis, challenging ER proteostasis. Anticipatory activation of the unfolded protein response (UPR) prepares cells for the onset of secretory function by expanding the ER size and folding capacity. How cells ensure that the repertoire of induced chaperones matches their post-differentiation folding needs is not well understood. We find that during differentiation of stem-like seam cells, a typical UPR target, the C. elegans BiP homologue HSP-4, is selectively induced in alae-secreting daughter cells, but is repressed in hypodermal daughter cells. Surprisingly, this lineage-dependent induction bypasses the requirement for UPR signaling, and instead is controlled by a specific developmental program. The repression of HSP-4 in hypodermal-fated cells requires a transcriptional regulator BLMP-1/BLIMP1, involved in differentiation of mammalian secretory cells. The HSP-4 induction is anticipatory, and is required for the integrity of secreted alae. Thus, differentiation programs can directly control a broad-specificity chaperone that is normally stress-dependent, to ensure the integrity of secreted proteins.


2020 ◽  
Vol 13 (11) ◽  
pp. 355
Author(s):  
Paula Aranaz ◽  
David Navarro-Herrera ◽  
María Zabala ◽  
Ana Romo-Hualde ◽  
Miguel López-Yoldi ◽  
...  

Supplementation with bioactive compounds capable of regulating energy homeostasis is a promising strategy to manage obesity. Here, we have screened the ability of different phenolic compounds (myricetin, kaempferol, naringin, hesperidin, apigenin, luteolin, resveratrol, curcumin, and epicatechin) and phenolic acids (p-coumaric, ellagic, ferulic, gallic, and vanillic acids) regulating C. elegans fat accumulation. Resveratrol exhibited the strongest lipid-reducing activity, which was accompanied by the improvement of lifespan, oxidative stress, and aging, without affecting worm development. Whole-genome expression microarrays demonstrated that resveratrol affected fat mobilization, fatty acid metabolism, and unfolded protein response of the endoplasmic reticulum (UPRER), mimicking the response to calorie restriction. Apigenin induced the oxidative stress response and lipid mobilization, while vanillic acid affected the unfolded-protein response in ER. In summary, our data demonstrates that phenolic compounds exert a lipid-reducing activity in C. elegans through different biological processes and signaling pathways, including those related with lipid mobilization and fatty acid metabolism, oxidative stress, aging, and UPR-ER response. These findings open the door to the possibility of combining them in order to achieve complementary activity against obesity-related disorders.


2007 ◽  
Vol 13 (4) ◽  
pp. 467-480 ◽  
Author(s):  
Cole M. Haynes ◽  
Kseniya Petrova ◽  
Cristina Benedetti ◽  
Yun Yang ◽  
David Ron

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Yunli Zhao ◽  
Ling Jin ◽  
Yuxin Chi ◽  
Jing Yang ◽  
Quan Zhen ◽  
...  

Oxidative stress has been proven as one of the most critical regulatory mechanisms involved in fine Particulate Matter- (PM2.5-) mediated toxicity. For a better understanding of the underlying mechanisms that enable oxidative stress to participate in PM2.5-induced toxic effects, the current study explored the effects of oxidative stress induced by PM2.5 on UPR and lifespan in C. elegans. The results implicated that PM2.5 exposure induced oxidative stress response, enhanced metabolic enzyme activity, activated UPR, and shortened the lifespan of C. elegans. Antioxidant N-acetylcysteine (NAC) could suppress the UPR through reducing the oxidative stress; both the antioxidant NAC and UPR inhibitor 4-phenylbutyric acid (4-PBA) could rescue the lifespan attenuation caused by PM2.5, indicating that the antioxidant and moderate proteostasis contribute to the homeostasis and adaptation to oxidative stress induced by PM2.5.


Diabetes ◽  
2017 ◽  
Vol 66 (6) ◽  
pp. 1703-1712 ◽  
Author(s):  
Zachary Pappalardo ◽  
Deeksha Gambhir Chopra ◽  
Thomas G. Hennings ◽  
Hunter Richards ◽  
Justin Choe ◽  
...  

Author(s):  
Yun Cao ◽  
Zhaowei Chen ◽  
Jijia Hu ◽  
Jun Feng ◽  
Zijing Zhu ◽  
...  

The endoplasmic reticulum (ER) stress and mitochondrial dysfunction in high glucose (HG)-induced podocyte injury have been demonstrated to the progression of diabetic kidney disease (DKD). However, the pathological mechanisms remain equivocal. Mitofusin2 (Mfn2) was initially identified as a dynamin-like protein involved in fusing the outer mitochondrial membrane (OMM). More recently, Mfn2 has been reported to be located at the ER membranes that contact OMM. Mitochondria-associated ER membranes (MAMs) is the intercellular membrane subdomain, which connects the mitochondria and ER through a proteinaceous tether. Here, we observed the suppression of Mfn2 expression in the glomeruli and glomerular podocytes of patients with DKD. Streptozotocin (STZ)-induced diabetic rats exhibited abnormal mitochondrial morphology and MAMs reduction in podocytes, accompanied by decreased expression of Mfn2 and activation of all three unfolded protein response (UPR) pathways (IRE1, ATF6, and PERK). The HG-induced mitochondrial dysfunction, MAMs reduction, and increased apoptosis in vitro were accompanied by the downregulation of Mfn2 and activation of the PERK pathway. Mfn2 physically interacts with PERK, and HG promotes a decrease in Mfn2-PERK interaction. In addition, Mfn2-silenced podocytes showed mitochondrial dysfunction, MAMs reduction, activation of PERK pathway, and increased apoptosis. Conversely, all these effects of HG stimulation were alleviated significantly by Mfn2 overexpression. Furthermore, the inhibition of PERK phosphorylation protected mitochondrial functions but did not affect the expression of Mfn2 in HG-treated podocytes. Therefore, this study confirmed that Mfn2 regulates the morphology and functions of MAMs and mitochondria, and exerts anti-apoptotic effects on podocytes by inhibiting the PERK pathway. Hence, the Mfn2-PERK signaling pathway may be a new therapeutic target for preventing podocyte injury in DKD.


Sign in / Sign up

Export Citation Format

Share Document