scholarly journals Periplasmic expression of SpyTagged antibody fragments enables rapid modular antibody assembly

Author(s):  
Christian Hentrich ◽  
Sarah-Jane Kellmann ◽  
Mateusz Putyrski ◽  
Manuel Cavada ◽  
Hanh Hanuschka ◽  
...  
2020 ◽  
Author(s):  
Christian Hentrich ◽  
Sarah-Jane Kellmann ◽  
Mateusz Putyrski ◽  
Manuel Cavada ◽  
Hanh Hanuschka ◽  
...  

AbstractAntibodies are essential tools in research and diagnostics. While antibody fragments can be rapidly produced in Escherichia coli, full-length antibodies with an Fc region or antibodies modified with probes are time and labor intensive in production.SpyTag/SpyCatcher protein ligation technology could covalently attach such functionalities to antibody fragments equipped with a SpyTag. However, we found that the necessarily periplasmic expression of such antibody fragments in E. coli led to rapid cleavage of the SpyTag by proteases.Here we show how this cleavage can be prevented, making the SpyTag technology accessible for E. coli produced antibodies. We demonstrate a modular toolbox for rapid creation of synthetic IgGs, oligomerized antibodies, and antibodies with different tags or enzymatic functionalities and measure their performance in a variety of immunoassays. Furthermore, we demonstrate surface immobilization, high-throughput screening of antibody libraries, and rapid prototyping of antibodies based on modular antibody assembly.


2006 ◽  
Vol 308 (1-2) ◽  
pp. 43-52 ◽  
Author(s):  
Barrett R. Harvey ◽  
Armen B. Shanafelt ◽  
Irina Baburina ◽  
Raymond Hui ◽  
Steve Vitone ◽  
...  

Author(s):  
U. Aebi ◽  
L.E. Buhle ◽  
W.E. Fowler

Many important supramolecular structures such as filaments, microtubules, virus capsids and certain membrane proteins and bacterial cell walls exist as ordered polymers or two-dimensional crystalline arrays in vivo. In several instances it has been possible to induce soluble proteins to form ordered polymers or two-dimensional crystalline arrays in vitro. In both cases a combination of electron microscopy of negatively stained specimens with analog or digital image processing techniques has proven extremely useful for elucidating the molecular and supramolecular organization of the constituent proteins. However from the reconstructed stain exclusion patterns it is often difficult to identify distinct stain excluding regions with specific protein subunits. To this end it has been demonstrated that in some cases this ambiguity can be resolved by a combination of stoichiometric labeling of the ordered structures with subunit-specific antibody fragments (e.g. Fab) and image processing of the electron micrographs recorded from labeled and unlabeled structures.


2019 ◽  
Author(s):  
Antoine Maruani ◽  
Peter A. Szijj ◽  
Calise Bahou ◽  
João C. F. Nogueira ◽  
Stephen Caddick ◽  
...  

<p>Diseases are multifactorial, with redundancies and synergies between various pathways. However, most of the antibody-based therapeutics in clinical trials and on the market interact with only one target thus limiting their efficacy. The targeting of multiple epitopes could improve the therapeutic index of treatment and counteract mechanisms of resistance. To this effect, a new class of therapeutics emerged: bispecific antibodies.</p><p>Bispecific formation using chemical methods is rare and low yielding and/or requires a large excess of one of the two proteins to avoid homodimerisation. In order for chemically prepared bispecifics to deliver their full potential, high-yielding, modular and reliable cross-linking technologies are required. Herein, we describe a novel approach not only for the rapid and high-yielding chemical generation of bispecific antibodies from native antibody fragments, but also for the site-specific dual functionalisation of the resulting bioconjugates. Based on orthogonal clickable functional groups, this strategy enables the assembly of functionalised bispecifics with controlled loading in a modular and convergent manner.</p>


1998 ◽  
Vol 64 (12) ◽  
pp. 4862-4869 ◽  
Author(s):  
Jörg F. Rippmann ◽  
Michaela Klein ◽  
Christian Hoischen ◽  
Bodo Brocks ◽  
Wolfgang J. Rettig ◽  
...  

ABSTRACT Recently it has been demonstrated that L-form cells ofProteus mirabilis (L VI), which lack a periplasmic compartment, can be efficiently used in the production and secretion of heterologous proteins. In search of novel expression systems for recombinant antibodies, we compared levels of single-chain variable-fragment (scFv) production in Escherichia coliJM109 and P. mirabilis L VI, which express four distinct scFvs of potential clinical interest that show differences in levels of expression and in their tendencies to form aggregates upon periplasmic expression. Production of all analyzed scFvs in E. coli was limited by the severe toxic effect of the heterologous product as indicated by inhibition of culture growth and the formation of insoluble aggregates in the periplasmic space, limiting the yield of active product. In contrast, the L-form cells exhibited nearly unlimited growth under the tested production conditions for all scFvs examined. Moreover, expression experiments with P. mirabilis L VI led to scFv concentrations in the range of 40 to 200 mg per liter of culture medium (corresponding to volume yields 33- to 160-fold higher than those with E. coli JM109), depending on the expressed antibody. In a translocation inhibition experiment the secretion of the scFv constructs was shown to be an active transport coupled to the signal cleavage. We suppose that this direct release of the newly synthesized product into a large volume of the growth medium favors folding into the native active structure. The limited aggregation of scFv observed in the P. mirabilis L VI supernatant (occurring in a first-order-kinetics manner) was found to be due to intrinsic features of the scFv and not related to the expression process of the host cells. The P. mirabilis L VI supernatant was found to be advantageous for scFv purification. A two-step chromatography procedure led to homogeneous scFv with high antigen binding activity as revealed from binding experiments with eukaryotic cells.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Julien Edeline ◽  
Roch Houot ◽  
Aurélien Marabelle ◽  
Marion Alcantara

AbstractChimeric antigen receptor (CAR)-modified T cells and BiTEs are both immunotherapies which redirect T cell specificity against a tumor-specific antigen through the use of antibody fragments. They demonstrated remarkable efficacy in B cell hematologic malignancies, thus paving the way for their development in solid tumors. Nonetheless, the use of such new drugs to treat solid tumors is not straightforward. So far, the results from early phase clinical trials are not as impressive as expected but many improvements are under way. In this review we present an overview of the clinical development of CAR-T cells and BiTEs targeting the main antigens expressed by solid tumors. We emphasize the most frequent hurdles encountered by either CAR-T cells or BiTEs, or both, and summarize the strategies that have been proposed to overcome these obstacles.


Sign in / Sign up

Export Citation Format

Share Document