X-ray diffraction, Mössbauer spectroscopic and electrical resistivity studies on Lohawat meteorite under high-pressure up to 9 GPa

Geochemistry ◽  
2013 ◽  
Vol 73 (2) ◽  
pp. 197-203 ◽  
Author(s):  
Usha Chandra ◽  
G. Parthasarathy ◽  
N.V. Chandra Shekar ◽  
P.Ch. Sahu
2003 ◽  
Vol 18 (1) ◽  
pp. 166-172 ◽  
Author(s):  
Kun'ichi Miyazawa ◽  
Minoru Akaishi ◽  
Yusuke Kuwasaki ◽  
Tadatomo Suga

Structural, mechanical, and electrical properties were examined for C60 whiskers, high-pressure sintered C60 whiskers, and C60 powder. A high density of dislocations was observed in the C60 whiskers, and the C60 whiskers with diameters of a few hundred nanometers were found to be flexible. Although both the specimens sintered under the same condition showed similar surface x-ray diffraction profiles with a strong accumulation of [110]tr orientation, the sintered C60 whiskers showed a higher micro-Vickers hardness and an electrical resistivity four orders of magnitude lower than that of the sintered C60 powder.


2016 ◽  
Vol 09 (01) ◽  
pp. 1650008 ◽  
Author(s):  
Le Deng ◽  
Li Bin Wang ◽  
Jie Ming Qin ◽  
Xiao Peng Jia ◽  
Hong An Ma

We prepared InxPbxCo4Sb[Formula: see text] by high-pressure and high-temperature (HPHT) method. Samples were characterized by X-ray diffraction (XRD), electron microprobe analysis and thermoelectric properties measurements. The Seebeck coefficient, electrical resistivity and thermal conductivity of InxPbxCo4Sb[Formula: see text] samples were all performed in the temperature range of 323–723[Formula: see text]K. With the increasing synthetic pressure, the Seebeck coefficient of In[Formula: see text]Pb[Formula: see text]Co4Sb[Formula: see text] samples, which synthesized between 1.5 GPa–2.3 GPa, showed an obvious increase while the thermal conductivity exhibited a substantial reduction.


2006 ◽  
Vol 20 (29) ◽  
pp. 4885-4890
Author(s):  
R. SELVA VENNILA ◽  
S. REZA GHORBANI ◽  
N. VICTOR JAYA

High pressure-high temperature electrical resistivity study on composition-controlled Nd 0.9 Ca 0.1 Ba 2 Cu 3 O 7-δ high T c superconductor (HTSC) is carried out by a four-probe technique using Bridgman anvils. A simple heating coil arrangement is used for heating the samples. Electrical resistivity behavior under pressure (up to a maximum of 8 GPa) at various temperatures (up to a maximum of 523 K) were studied and reported in this paper. Simulation of energy dispersive X-ray diffraction confirms substitution of calcium at the Nd site of Nd -123. Variation of the electrical resistivity under pressure is compared with that of the structural changes and the bulk modulus was determined.


2002 ◽  
Vol 718 ◽  
Author(s):  
K. Yamaura ◽  
D.P. Young ◽  
E. Takayama-Muromachi

AbstractNovel perovskite compound SrRhO3 was synthesized in a polycrystalline form by high-pressure technique at 6 GPa and 1500°C, followed by measurements of magnetic susceptibility, electrical resistivity, thermopower, and specific heat. Powder x-ray diffraction study found the slightly distorted perovskite structure, GdFeO3-type, to be likely to SrRhO3; space group was Pnma and lattice parameters were α = 5.5394(2) Å, b = 7.8539 (3) Å, and c = 5.5666(2) A. Oxygen vacancies in the perovskite were quantitatively investigated by thermogravimetric analysis and then found either absent or at least insignificant. The title compound shows a Fermi-liquid behavior in its electrical resistivity. The magnetic susceptibility is large [χ(300) ∼1.1x10-3 emu/mol-Rh], and the characteristics seem to be intermediate between enhanced Pauli- and Curie-Weiss-type paramagnetism.


2017 ◽  
Vol 86 (11) ◽  
pp. 114605 ◽  
Author(s):  
Masatomo Uehara ◽  
Kai Kobayashi ◽  
Hiroki Yamamoto ◽  
Akitoshi Nakata ◽  
Kazuhei Wakiya ◽  
...  

2004 ◽  
Vol 27 (1-3) ◽  
pp. 415-418
Author(s):  
J. Bak-Misiuk ◽  
A. Misiuk ◽  
J. Ratajczak ◽  
A. Shalimov ◽  
I. Antonova ◽  
...  

2020 ◽  
Author(s):  
Pia Vervoorts ◽  
Stefan Burger ◽  
Karina Hemmer ◽  
Gregor Kieslich

The zeolitic imidazolate frameworks ZIF-8 and ZIF-67 harbour a series of fascinating stimuli responsive properties. Looking at their responsitivity to hydrostatic pressure as stimulus, open questions exist regarding the isotropic compression with non-penetrating pressure transmitting media. By applying a state-of-the-art high-pressure powder X-ray diffraction setup, we revisit the high-pressure behaviour of ZIF-8 and ZIF-67 up to <i>p</i> = 0.4 GPa in small pressure increments. We observe a drastic, reversible change of high-pressure powder X-ray diffraction data at <i>p</i> = 0.3 GPa, discovering large volume structural flexibility in ZIF-8 and ZIF-67. Our results imply a shallow underlying energy landscape in ZIF-8 and ZIF-67, an observation that might point at rich polymorphism of ZIF-8 and ZIF-67, similar to ZIF-4(Zn).<br>


2020 ◽  
Author(s):  
Pia Vervoorts ◽  
Stefan Burger ◽  
Karina Hemmer ◽  
Gregor Kieslich

The zeolitic imidazolate frameworks ZIF-8 and ZIF-67 harbour a series of fascinating stimuli responsive properties. Looking at their responsitivity to hydrostatic pressure as stimulus, open questions exist regarding the isotropic compression with non-penetrating pressure transmitting media. By applying a state-of-the-art high-pressure powder X-ray diffraction setup, we revisit the high-pressure behaviour of ZIF-8 and ZIF-67 up to <i>p</i> = 0.4 GPa in small pressure increments. We observe a drastic, reversible change of high-pressure powder X-ray diffraction data at <i>p</i> = 0.3 GPa, discovering large volume structural flexibility in ZIF-8 and ZIF-67. Our results imply a shallow underlying energy landscape in ZIF-8 and ZIF-67, an observation that might point at rich polymorphism of ZIF-8 and ZIF-67, similar to ZIF-4(Zn).<br>


2019 ◽  
Vol 74 (4) ◽  
pp. 357-363
Author(s):  
Daniela Vitzthum ◽  
Hubert Huppertz

AbstractThe mixed cation triel borate Ga4In4B15O33(OH)3 was synthesized in a Walker-type multianvil apparatus at high-pressure/high-temperature conditions of 12.5 GPa and 1300°C. Although the product could not be reproduced in further experiments, its crystal structure could be reliably determined via single-crystal X-ray diffraction data. Ga4In4B15O33(OH)3 crystallizes in the tetragonal space group I41/a (origin choice 2) with the lattice parameters a = 11.382(2), c = 15.244(2) Å, and V = 1974.9(4) Å3. The structure of the quaternary triel borate consists of a complex network of BO4 tetrahedra, edge-sharing InO6 octahedra in dinuclear units, and very dense edge-sharing GaO6 octahedra in tetranuclear units.


Sign in / Sign up

Export Citation Format

Share Document