Element mobility during zeolitic and argillic alteration of volcanic ash in a closed-basin lacustrine environment: Case study Olduvai Gorge, Tanzania

2009 ◽  
Vol 265 (3-4) ◽  
pp. 540-552 ◽  
Author(s):  
Lindsay J. McHenry
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Eduardo Rossi ◽  
Gholamhossein Bagheri ◽  
Frances Beckett ◽  
Costanza Bonadonna

AbstractA large amount of volcanic ash produced during explosive volcanic eruptions has been found to sediment as aggregates of various types that typically reduce the associated residence time in the atmosphere (i.e., premature sedimentation). Nonetheless, speculations exist in the literature that aggregation has the potential to also delay particle sedimentation (rafting effect) even though it has been considered unlikely so far. Here, we present the first theoretical description of rafting that demonstrates how delayed sedimentation may not only occur but is probably more common than previously thought. The fate of volcanic ash is here quantified for all kind of observed aggregates. As an application to the case study of the 2010 eruption of Eyjafjallajökull volcano (Iceland), we also show how rafting can theoretically increase the travel distances of particles between 138–710 μm. These findings have fundamental implications for hazard assessment of volcanic ash dispersal as well as for weather modeling.


Author(s):  
Emmanuel Skoufias ◽  
Eric Strobl ◽  
Thomas Tveit

AbstractThis article demonstrates the construction of earthquake and volcano damage indices using publicly available remote sensing sources and data on the physical characteristics of events. For earthquakes we use peak ground motion maps in conjunction with building type fragility curves to construct a local damage indicator. For volcanoes we employ volcanic ash data as a proxy for local damages. Both indices are then spatially aggregated by taking local economic exposure into account by assessing nightlight intensity derived from satellite images. We demonstrate the use of these indices with a case study of Indonesia, a country frequently exposed to earthquakes and volcanic eruptions. The results show that the indices capture the areas with the highest damage, and we provide overviews of the modeled aggregated damage for all provinces and districts in Indonesia for the time period 2004 to 2014. The indices were constructed using a combination of software programs—ArcGIS/Python, Matlab, and Stata. We also outline what potential freeware alternatives exist. Finally, for each index we highlight the assumptions and limitations that a potential practitioner needs to be aware of.


2017 ◽  
Vol 17 (2) ◽  
pp. 1187-1205 ◽  
Author(s):  
Guangliang Fu ◽  
Fred Prata ◽  
Hai Xiang Lin ◽  
Arnold Heemink ◽  
Arjo Segers ◽  
...  

Abstract. Using data assimilation (DA) to improve model forecast accuracy is a powerful approach that requires available observations. Infrared satellite measurements of volcanic ash mass loadings are often used as input observations for the assimilation scheme. However, because these primary satellite-retrieved data are often two-dimensional (2-D) and the ash plume is usually vertically located in a narrow band, directly assimilating the 2-D ash mass loadings in a three-dimensional (3-D) volcanic ash model (with an integral observational operator) can usually introduce large artificial/spurious vertical correlations.In this study, we look at an approach to avoid the artificial vertical correlations by not involving the integral operator. By integrating available data of ash mass loadings and cloud top heights, as well as data-based assumptions on thickness, we propose a satellite observational operator (SOO) that translates satellite-retrieved 2-D volcanic ash mass loadings to 3-D concentrations. The 3-D SOO makes the analysis step of assimilation comparable in the 3-D model space.Ensemble-based DA is used to assimilate the extracted measurements of ash concentrations. The results show that satellite DA with SOO can improve the estimate of volcanic ash state and the forecast. Comparison with both satellite-retrieved data and aircraft in situ measurements shows that the effective duration of the improved volcanic ash forecasts for the distal part of the Eyjafjallajökull volcano is about 6 h.


Experiments involving the manufacture and use of stone tools are described. The original tools that served as models came from two sites in upper bed IV at Olduvai Gorge, Tanzania. The following conclusions are drawn. Widespread use of terms such as ‘crude’ or ‘refined’ in describing stone tools tells us nothing of the technical level achieved by the makers of the assemblages. The different qualities of the available raw materials, the forms in which they occur and how they function when used may have influenced the tool maker’s designs and the morphology of the tools. The experiments suggest uses for the tools that are relevant to our understanding of what is found on some archaeological sites.


2016 ◽  
Vol 11 (1) ◽  
pp. 4-14 ◽  
Author(s):  
Masato Iguchi ◽  

A method for evaluating the volcanic ash discharge rate by using seismic and ground deformation signals is proposed to obtain this rate in real time for southern Kyushu’s Sakurajima volcano. This volcano repeats vulcanian eruptions accompanying significant ground deformation showing deflation and nonvulcanian type eruptions that emit the minor emissions of volcanic ash associated with volcanic tremors but without significant ground deformation. We examined ground deformation and seismic amplitude as they relate to monthly sums of volcanic ash weight ejected from craters. We found that in monthly sums, both deflation ground deformation and the amplitude of volcanic tremors correlate positively with the weight of ejected volcanic ash. A linear combination of terms for ground deformation, seismic amplitude and a correction factor correlates better than single parameter of deflation or seismic amplitude with volcanic ash weight. The linear combination provides the volcanic ash discharge rate in quasi-real time and the total amount of volcanic ash distributed over a wide area immediately after a volcanic eruption ends.


2017 ◽  
Vol 122 (17) ◽  
pp. 9332-9350 ◽  
Author(s):  
Alexandros P. Poulidis ◽  
Tetsuya Takemi ◽  
Masato Iguchi ◽  
Ian A. Renfrew

Sign in / Sign up

Export Citation Format

Share Document