explosive volcanic eruptions
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 30)

H-INDEX

43
(FIVE YEARS 2)

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Mokhamad Nur Cahyadi ◽  
Eko Yuli Handoko ◽  
Ririn Wuri Rahayu ◽  
Kosuke Heki

AbstractUsing the ionospheric total electron content (TEC) data from ground-based Global Navigation Satellite System (GNSS) receivers in Japan, we compared ionospheric responses to five explosive volcanic eruptions 2004–2015 of the Asama, Shin-Moe, Sakurajima, and Kuchinoerabu-jima volcanoes. The TEC records show N-shaped disturbances with a period ~ 80 s propagating outward with the acoustic wave speed in the F region of the ionosphere. The amplitudes of these TEC disturbances are a few percent of the background absolute vertical TEC. We propose to use such relative amplitudes as a new index for the intensity of volcanic explosions. Graphical Abstract


2021 ◽  
Vol 574 ◽  
pp. 117162
Author(s):  
Joshua Méndez Harper ◽  
Corrado Cimarelli ◽  
Valeria Cigala ◽  
Ulrich Kueppers ◽  
Josef Dufek

2021 ◽  
pp. 243-281
Author(s):  
Augusto Neri ◽  
Tomaso Esposti Ongaro ◽  
Mattia de’ Michieli Vitturi ◽  
Matteo Cerminara

2021 ◽  
Author(s):  
Mokhamad Nur Cahyadi ◽  
Eko Yuli Handoko ◽  
Ririn Wuri Rahayu ◽  
Kosuke Heki

Abstract Using the total ionospheric electron content (TEC) data from ground-based global satellite navigation system (GNSS) receivers in Japan, we compared ionospheric responses to five explosive volcanic eruptions 2004-2015 of the Asama, Shin-Moe, Sakurajima, and Kuchinoerabu-jima volcanoes. The TEC records show N-shaped disturbances with a period ~80 seconds propagating outward with the acoustic wave speed in the F region of the ionosphere. The amplitudes of these TEC disturbances are a few percent of the background absolute vertical TEC. We propose to use such relative amplitudes as a new index for the intensity of volcanic explosions.


2021 ◽  
Vol 118 (29) ◽  
pp. e2021689118
Author(s):  
N. Truong ◽  
J. I. Lunine

We hypothesize that trace amounts of phosphides formed in the mantle are a plausible abiotic source of the Venusian phosphine observed by Greaves et al. [Nat. Astron., https://doi.org/10.1038/s41550-020-1174-4 (2020)]. In this hypothesis, small amounts of phosphides (P3− bound in metals such as iron), sourced from a deep mantle, are brought to the surface by volcanism. They are then ejected into the atmosphere in the form of volcanic dust by explosive volcanic eruptions, which were invoked by others to explain the episodic changes of sulfur dioxide seen in the atmosphere [Esposito, Science 223, 1072–1074 (1984)]. There they react with sulfuric acid in the aerosol layer to form phosphine (2 P3− + 3H2SO4 = 2PH3 + 3SO42-). We take issue with the conclusion of Bains et al. [arXiv:2009.06499 (2020)] that the volcanic rates for such a mechanism would have to be implausibly high. We consider a mantle with the redox state similar to the Earth, magma originating deep in the mantle—a likely scenario for the origin of plume volcanism on Venus—and episodically high but plausible rates of volcanism on a Venus bereft of plate tectonics. We conclude that volcanism could supply an adequate amount of phosphide to produce phosphine. Our conclusion is supported by remote sensing observations of the Venusian atmosphere and surface that have been interpreted as indicative of currently active volcanism.


Geology ◽  
2021 ◽  
Author(s):  
Greg A. Valentine ◽  
Meredith A. Cole

Large explosive volcanic eruptions are commonly associated with caldera subsidence and ignimbrites deposited by pyroclastic currents. Volumes and thicknesses of intracaldera and outflow ignimbrites at 76 explosive calderas around the world indicate that subsidence is commonly simultaneous with eruption, such that large proportions of the pyroclastic currents are trapped within the developing basins. As a result, much of an eruption must penetrate its own deposits, a process that also occurs in large, debris-filled vent structures even in the absence of caldera formation and that has been termed “gargling eruption.” Numerical modeling of the resulting dynamics shows that the interaction of preexisting deposits (fill) with an erupting (juvenile) mixture causes a dense sheath of fill material to be lifted along the margins of the erupting jet. This can cause an eruption that would otherwise produce a buoyant plume and fallout deposits to instead form pyroclastic currents as the dense sheath drives pulsing jet behavior. Increasing thickness of fill amplifies the time variation in jet height. Increasing the fill grain size relative to that of the juvenile particles can result in a much higher jet due to poorer mixing between the dense sheath and the dilute jet core. In all cases, material collapses along the entire height of the dense sheath rather than from the top of a simple fountain. These gargle dynamics provide strong backing for processes that have been inferred to result in intraplinian ignimbrites and simultaneous deposition from high- and low-energy pyroclastic currents.


2021 ◽  
Vol 21 (11) ◽  
pp. 9009-9029
Author(s):  
John Staunton-Sykes ◽  
Thomas J. Aubry ◽  
Youngsub M. Shin ◽  
James Weber ◽  
Lauren R. Marshall ◽  
...  

Abstract. The evolution of volcanic sulfur and the resulting radiative forcing following explosive volcanic eruptions is well understood. Petrological evidence suggests that significant amounts of halogens may be co-emitted alongside sulfur in some explosive volcanic eruptions, and satellite evidence indicates that detectable amounts of these halogens may reach the stratosphere. In this study, we utilise an aerosol–chemistry–climate model to simulate stratospheric volcanic eruption emission scenarios of two sizes, both with and without co-emission of volcanic halogens, in order to understand how co-emitted halogens may alter the life cycle of volcanic sulfur, stratospheric chemistry, and the resulting radiative forcing. We simulate a large (10 Tg of SO2) and very large (56 Tg of SO2) sulfur-only eruption scenario and a corresponding large (10 Tg SO2, 1.5 Tg HCl, 0.0086 Tg HBr) and very large (56 Tg SO2, 15 Tg HCl, 0.086 Tg HBr) co-emission eruption scenario. The eruption scenarios simulated in this work are hypothetical, but they are comparable to Volcanic Explosivity Index (VEI) 6 (e.g. 1991 Mt Pinatubo) and VEI 7 (e.g. 1257 Mt Samalas) eruptions, representing 1-in-50–100-year and 1-in-500–1000-year events, respectively, with plausible amounts of co-emitted halogens based on satellite observations and volcanic plume modelling. We show that co-emission of volcanic halogens and sulfur into the stratosphere increases the volcanic effective radiative forcing (ERF) by 24 % and 30 % in large and very large co-emission scenarios compared to sulfur-only emission. This is caused by an increase in both the forcing from volcanic aerosol–radiation interactions (ERFari) and composition of the stratosphere (ERFclear,clean). Volcanic halogens catalyse the destruction of stratospheric ozone, which results in significant stratospheric cooling, offsetting the aerosol heating simulated in sulfur-only scenarios and resulting in net stratospheric cooling. The ozone-induced stratospheric cooling prevents aerosol self-lofting and keeps the volcanic aerosol lower in the stratosphere with a shorter lifetime. This results in reduced growth by condensation and coagulation and a smaller peak global-mean effective radius compared to sulfur-only simulations. The smaller effective radius found in both co-emission scenarios is closer to the peak scattering efficiency radius of sulfate aerosol, and thus co-emission of halogens results in larger peak global-mean ERFari (6 % and 8 %). Co-emission of volcanic halogens results in significant stratospheric ozone, methane, and water vapour reductions, resulting in significant increases in peak global-mean ERFclear,clean (> 100 %), predominantly due to ozone loss. The dramatic global-mean ozone depletion simulated in large (22 %) and very large (57 %) co-emission scenarios would result in very high levels of UV exposure on the Earth's surface, with important implications for society and the biosphere. This work shows for the first time that co-emission of plausible amounts of volcanic halogens can amplify the volcanic ERF in simulations of explosive eruptions. It highlights the need to include volcanic halogen emissions when simulating the climate impacts of past or future eruptions, as well as the necessity to maintain space-borne observations of stratospheric compounds to better constrain the stratospheric injection estimates of volcanic eruptions.


2021 ◽  
Vol 9 ◽  
Author(s):  
Simone Colucci ◽  
Paolo Papale

Explosive eruptions are the surface manifestation of dynamics that involve transfer of magma from the underground regions of magma accumulation. Evidence of the involvement of compositionally different magmas from different reservoirs is continuously increasing to countless cases. Yet, models of eruption dynamics consider only the uppermost portion of the plumbing system, neglecting connections to deeper regions of magma storage. Here we show that the extent and efficiency of the interconnections between different magma storage regions largely control the size of the eruptions, their evolution, the causes of their termination, and ultimately their impact on the surrounding environment. Our numerical simulations first reproduce the magnitude-intensity relationship observed for explosive eruptions on Earth and explain the observed variable evolutions of eruption mass flow rates. Because deep magmatic interconnections are largely inaccessible to present-day imaging capabilities, our results motivate the need to better image and characterize extant magma bodies.


2021 ◽  
Author(s):  
J. Taddeucci ◽  
C. Cimarelli ◽  
M. A. Alatorre‑Ibargüengoitia ◽  
H. Delgado-Granados ◽  
D. Andronico ◽  
...  

2021 ◽  
Author(s):  
Christoph Brühl ◽  
Jennifer Schallock ◽  
Jos Lelieveld ◽  
Ralf Weigel ◽  
Oliver Appel ◽  
...  

<p>The chemistry climate model EMAC with interactive stratospheric and tropospheric aerosol is used for transient simulation of aerosol radiative forcing including effects of about 500 explosive volcanic eruptions and desert dust. We demonstrate that volcanic SO<sub>2</sub> injections are needed to explain the StratoClim aircraft observations in August 2017 of SO<sub>2</sub> and aerosol properties in the UTLS. This presentation includes studies to ISAMIP concerning aerosol optical depth at different wavelengths and contribution of different aerosol types, involving also multi-instrument satellite observations. We demonstrate that sulfate accumulation from consecutive smaller tropical and subtropical eruptions matters for radiative forcing, as for example in 2016.</p>


Sign in / Sign up

Export Citation Format

Share Document