Noble gas magmatic signature of the Andean Northern Volcanic Zone from fluid inclusions in minerals

2021 ◽  
Vol 559 ◽  
pp. 119966
Author(s):  
J. Lages ◽  
A.L. Rizzo ◽  
A. Aiuppa ◽  
P. Samaniego ◽  
J.L. Le Pennec ◽  
...  
2002 ◽  
Vol 115 (1-4) ◽  
pp. 187-221 ◽  
Author(s):  
Marc Legault ◽  
Michel Gauthier ◽  
Michel Jébrak ◽  
Don W. Davis ◽  
François Baillargeon

2021 ◽  
Author(s):  
Kata Molnár ◽  
Marjan Temovski ◽  
László Palcsu

<p>Late Miocene to Pleistocene volcanism within the Vardar zone (N. Macedonia) covers a large area, has a wide range in composition and it is largely connected to the tectonic evolution of the South Balkan extensional system, the northern part of the Aegean extensional regime. A recent study indicated an increasing rate of mantle metasomatism towards the younger centers in the region [1]. During the last stage of activity, ultrapotassic (UK) centers that formed between ca. 3.2 and 1.5 Ma originated from the lithospheric mantle beneath the region [2]. Although there are no reported mantle xenoliths from these centers, the erupted mafic rocks contain abundant olivine as phenocrysts [3]. Noble gas isotopic characteristics of fluid inclusions in olivine can reveal important information about the origin of the fluid and the metasomatic state of the lithospheric mantle. We analyzed for the first time the noble gas composition of fluid inclusions of olivine phenocrysts from the Mlado Nagoričane volcanic center, the northernmost member of the UK centers with an eruption age of 1.8 ± 0.1 Ma [2]. The R/R<sub>A</sub> ratios give a range of 3.1-4.5 with <sup>4</sup>He/<sup>20</sup>Ne values of 11.7-14.6. These R/R<sub>A</sub> values are lower than the MORB and the averaged subcontinental lithospheric values, and considering the negligible amount of atmospheric contribution, imply a more metasomatized character for the underlying lithospheric mantle beneath the region. Mantle-derived noble gases were detected in a recent geochemical study on the thermal springs and gas exhalations in the region, with up to 20% of mantle contribution calculated based on their noble gas composition using the MORB R/R<sub>A</sub> value [4]. These new Mlado Nagoričane fluid inclusion noble gas values indicate that the mantle contribution in the recent gas emissions in the region could be higher than what was thought.</p><p>This research was supported by the European Union and the State of Hungary, financed by the European Regional and Development Fund in the project of GINOP-2.3.2-15-2016-00009 ‘ICER’ project</p><p>[1] Molnár et al. 2020 – EGU2020-13101.</p><p>[2] Yanev et al., 2008 – Mineralogy and Petrology, 94(1-2), 45-60.</p><p>[3] Yanev et al., 2008 – Geochemistry, Mineralogy and Petrology, Sofia, 46, 35-67.</p><p>[4] Temovski et al. 2020 – EGU2020-2763.</p>


2019 ◽  
Vol 200 ◽  
pp. 37-53 ◽  
Author(s):  
Peng Zhang ◽  
Lin-Lin Kou ◽  
Yan Zhao ◽  
Zhong-Wei Bi ◽  
De-Ming Sha ◽  
...  

2005 ◽  
Vol 46 (11) ◽  
pp. 2225-2252 ◽  
Author(s):  
PABLO SAMANIEGO ◽  
HERVÉ MARTIN ◽  
MICHEL MONZIER ◽  
CLAUDE ROBIN ◽  
MICHEL FORNARI ◽  
...  

1992 ◽  
Vol 29 (10) ◽  
pp. 2211-2225 ◽  
Author(s):  
E. H. Chown ◽  
Réal Daigneault ◽  
Wulf Mueller ◽  
J. K. Mortensen

The Archean Abitibi Subprovince has been divided formally into a Northern Volcanic Zone (NVZ), including the entire northern part of the subprovince, and a Southern Volcanic Zone (SVZ) on the basis of distinct volcano-sedimentary successions, related plutonic suites, and precise U–Pb age determinations. The NVZ has been further formally subdivided into (i) a Monocyclic Volcanic Segment (MVS) composed of an extensive subaqueous basalt plain with scattered felsic volcanic complexes (2730–2725 Ma), interstratified with or overlain by linear volcaniclastic sedimentary basins; and (ii) a Polycyclic Volcanic Segment (PVS) comprising a second mafic–felsic volcanic cycle (2722–2711 Ma) and a sedimentary assemblage with local shoshonitic volcanic rocks.A sequence of deformational events (D1–D6) over a period of 25 Ma in the NVZ is consistent with a major compressional event. North–south shortening was first accommodated by near-vertical east-trending folds and, with continued deformation, was concentrated along major east-trending fault zones and contact-strain aureoles around synvolcanic intrusions, both with a downdip movement. Subsequent dextral strike-slip movement occurred on southeast-trending faults and major east-trending faults which controlled the emplacement of syntectonic plutons (2703–2690 Ma).This study suggests that the NVZ, which is a coherent geotectonic unit, initially formed as a diffuse volcanic arc, represented by the MVZ, in which the northern part, represented by the PVS, evolved into a mature arc as documented by a second volcanic and sedimentary cycle associated with major plutonic accretion. Volcano-sedimentary evolution and associated plutonism, as well as structural evolution, are best explained by a plate-tectonic model involving oblique convergence.


Lithos ◽  
2012 ◽  
Vol 132-133 ◽  
pp. 180-192 ◽  
Author(s):  
Silvana Hidalgo ◽  
Marie C. Gerbe ◽  
Hervé Martin ◽  
Pablo Samaniego ◽  
Erwan Bourdon

2006 ◽  
Vol 47 (6) ◽  
pp. 1147-1175 ◽  
Author(s):  
J. A. BRYANT ◽  
G. M. YOGODZINSKI ◽  
M. L. HALL ◽  
J. L. LEWICKI ◽  
D. G. BAILEY

Sign in / Sign up

Export Citation Format

Share Document