Efficiency of nanoscale zero-valent iron on the enhanced low molecular weight organic acid removal Pb from contaminated soil

Chemosphere ◽  
2014 ◽  
Vol 117 ◽  
pp. 617-624 ◽  
Author(s):  
Guiyin Wang ◽  
Shirong Zhang ◽  
Xiaoxun Xu ◽  
Ting Li ◽  
Yun Li ◽  
...  
2018 ◽  
Vol 8 (12) ◽  
pp. 2444 ◽  
Author(s):  
Junhao Qin ◽  
Osim Enya ◽  
Chuxia Lin

A 15-day batch experiment was conducted to investigate the behaviours of Fe, Mn, and Al oxides upon attack by three common low-molecular-weight organic acids, and their effects on liberation of trace elements from a multi-contaminated soil. While the capacity of malic acid to mobilize soil-borne Fe, Mn, and Al was weaker compared to citric and oxalic acids, a similar trend was observed, showing that the concentration of dissolved Fe, Mn, and Al increased with increasing duration of the experiment. Marked increase in metal concentrations only took place after 5 or 7 days of the experiment. For the same organic acid treatment, Fe, Mn, and Al all showed a very similar temporal variation pattern. The concentration of dissolved Fe, Mn, and Al was markedly controlled by the total Fe, Mn, and Al contained in the soil, respectively. It appears that manganese oxides were more reactive to the organic acids, as compared to their Fe and Al counterparts. However, when multiple organic acids were present, the soil-borne Fe, Mn, and Al were mobilized rapidly within the first 5 or 7 days of the experiment and then tended to decrease. The formation of insoluble Fe, Mn, and Al organic complexes tended to be enhanced due to co-existence of multiple organic acids, resulting in the re-immobilization of the dissolved Fe, Mn, and Al. The organic acid-driven dissolution of Fe, Mn, or Al had a major control on the mobilization of As, Cr, Zn, Ni, Cu, and Cd that were bound to these oxides with a correlation coefficient being frequently greater than 0.9 for As, Cr, Zn, and Ni.


2020 ◽  
Vol 9 (1) ◽  
pp. 736-750
Author(s):  
Xilu Chen ◽  
Xiaomin Li ◽  
Dandan Xu ◽  
Weichun Yang ◽  
Shaoyuan Bai

AbstractChromium (Cr) is a common toxic heavy metal that is widely used in all kinds of industries, causing a series of environmental problems. Nanoscale zero- valent iron (nZVI) is considered to be an ideal remediation material for contaminated soil, especially for heavy metal pollutants. As a material of low toxicity and good activity, nZVI has been widely applied in the in situ remediation of soil hexavalent chromium (Cr(vi)) with mobility and toxicity in recent years. In this paper, some current technologies for the preparation of nZVI are summarized and the remediation mechanism of Cr(vi)-contaminated soil is proposed. Five classified modified nZVI materials are introduced and their remediation processes in Cr(vi)-contaminated soil are summarized. Key factors affecting the remediation of Cr(vi)-contaminated soil by nZVI are studied. Interaction mechanisms between nZVI-based materials and Cr(vi) are explored. This study provides a comprehensive review of the nZVI materials for the remediation of Cr(vi)-contaminated soil, which is conducive to reducing soil pollution.


2005 ◽  
Vol 37 (3) ◽  
pp. 517-531 ◽  
Author(s):  
Patrick A.W. van Hees ◽  
David L. Jones ◽  
Lars Nyberg ◽  
Sara J.M. Holmström ◽  
Douglas L. Godbold ◽  
...  

2005 ◽  
Vol 167 (1-4) ◽  
pp. 111-122 ◽  
Author(s):  
Shuzhen Zhang ◽  
Wei Li ◽  
Xiao-Quan Shan ◽  
Anxiang Lu ◽  
Peijiang Zhou

Sign in / Sign up

Export Citation Format

Share Document