Toxicity of dodecylbenzene to algae, crustacean, and fish – Passive dosing of highly hydrophobic liquids at the solubility limit

Chemosphere ◽  
2020 ◽  
Vol 251 ◽  
pp. 126396 ◽  
Author(s):  
Felix Stibany ◽  
Stine Nørgaard Schmidt ◽  
Philipp Mayer ◽  
Andreas Schäffer
TAPPI Journal ◽  
2015 ◽  
Vol 14 (7) ◽  
pp. 441-450
Author(s):  
HENRIK WALLMO, ◽  
ULF ANDERSSON ◽  
MATHIAS GOURDON ◽  
MARTIN WIMBY

Many of the pulp mill biorefinery concepts recently presented include removal of lignin from black liquor. In this work, the aim was to study how the change in liquor chemistry affected the evaporation of kraft black liquor when lignin was removed using the LignoBoost process. Lignin was removed from a softwood kraft black liquor and four different black liquors were studied: one reference black liquor (with no lignin extracted); two ligninlean black liquors with a lignin removal rate of 5.5% and 21%, respectively; and one liquor with maximum lignin removal of 60%. Evaporation tests were carried out at the research evaporator in Chalmers University of Technology. Studied parameters were liquor viscosity, boiling point rise, heat transfer coefficient, scaling propensity, changes in liquor chemical composition, and tube incrustation. It was found that the solubility limit for incrustation changed towards lower dry solids for the lignin-lean black liquors due to an increased salt content. The scaling obtained on the tubes was easily cleaned with thin liquor at 105°C. It was also shown that the liquor viscosity decreased exponentially with increased lignin outtake and hence, the heat transfer coefficient increased with increased lignin outtake. Long term tests, operated about 6 percentage dry solids units above the solubility limit for incrustation for all liquors, showed that the heat transfer coefficient increased from 650 W/m2K for the reference liquor to 1500 W/m2K for the liquor with highest lignin separation degree, 60%.


2021 ◽  
Author(s):  
Fabian Garmroudi ◽  
Michael Parzer ◽  
Alexander Riss ◽  
Nikolas Reumann ◽  
Bernhard Hinterleitner ◽  
...  

2019 ◽  
Vol 19 (9) ◽  
pp. 720-726 ◽  
Author(s):  
Boguslaw Lipinski

Although it is generally accepted that selenium (Se) is important for life, it is not well known which forms of organic and/or inorganic Se compound are the most biologically active. In nature Se exists mostly in two forms, namely as selenite with fourvalent and selenate with sixvalent cations, from which all other inorganic and organic species are derived. Despite a small difference in their electronic structure, these two inorganic parent compounds differ significantly in their redox properties. Hence, only selenite can act as an oxidant, particularly in the reaction with free and/or protein- bound sulhydryl (SH) groups. For example, selenite was shown to inhibit the hydroxyl radicalinduced reduction and scrambled reoxidation of disulfides in human fibrinogen thus preventing the formation of highly hydrophobic polymer, termed parafibrin. Such a polymer, when deposited within peripheral and/or cerebral circulation, may cause irreversible damage resulting in the development of cardiovascular, neurological and other degenerative diseases. In addition, parafibrin deposited around tumor cells produces a protease-resistant coat protecting them against immune recognition and elimination. On the other hand, parafibrin generated by Ebola’s protein disulfide isomerase can form a hydrophobic ‘spike’ that facilitates virus attachment and entry to the host cell. In view of these specific properties of selenite this compound is a potential candidate as an inexpensive and readily available food supplement in the prevention and/or treatment of cardiovascular, neoplastic, neurological and infectious diseases.


Biomimetics ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 38
Author(s):  
Quentin Legrand ◽  
Stephane Benayoun ◽  
Stephane Valette

This investigation of morphology-wetting links was performed using a biomimetic approach. Three natural leaves’ surfaces were studied: two bamboo varieties and Ginkgo Biloba. Multiscale surface topographies were analyzed by SEM observations, FFT, and Gaussian filtering. A PDMS replicating protocol of natural surfaces was proposed in order to study the purely morphological contribution to wetting. High static contact angles, close to 135∘, were measured on PDMS replicated surfaces. Compared to flat PDMS, the increase in static contact angle due to purely morphological contribution was around 20∘. Such an increase in contact angle was obtained despite loss of the nanometric scale during the replication process. Moreover, a significant decrease of the hysteresis contact angle was measured on PDMS replicas. The value of the contact angle hysteresis moved from 40∘ for flat PDMS to less than 10∘ for textured replicated surfaces. The wetting behavior of multiscale textured surfaces was then studied in the frame of the Wenzel and Cassie–Baxter models. Whereas the classical laws made it possible to describe the wetting behavior of the ginkgo biloba replications, a hierarchical model was developed to depict the wetting behavior of both bamboo species.


2021 ◽  
Vol 231 ◽  
pp. 117815
Author(s):  
C.M.B. Leite Silva ◽  
A.G. Bispo-Jr ◽  
L.V.L. Citolino ◽  
C.A. Olivati ◽  
S.A.M. Lima ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Arif I. Inamdar ◽  
Batjargal Sainbileg ◽  
Saqib Kamal ◽  
Khasim Saheb Bayikadi ◽  
Raman Sankar ◽  
...  

Water-assisted spin-flop antiferromagnetic to antiferromagnetic transformation in a highly hydrophobic Cu-based MOF is observed.


Cosmetics ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 45
Author(s):  
Eduardo Guzmán ◽  
Laura Fernández-Peña ◽  
Lorenzo Rossi ◽  
Mathieu Bouvier ◽  
Francisco Ortega ◽  
...  

This work analyzes the dispersion of two highly hydrophobic actives, (9Z)-N-(1,3-dihydroxyoctadecan-2-yl)octadec-9-enamide (ceramidelike molecule) and 2,6-diamino-4-(piperidin-1-yl)pyrimidine 1-oxide (minoxidil), using oil-in-water nanoemulsions with the aim of preparing stable and safe aqueous-based formulations that can be exploited for enhancing the penetration of active compounds through cosmetic substrates. Stable nanoemulsions with a droplet size in the nanometric range (around 200 nm) and a negative surface charge were prepared. It was possible to prepare formulations containing up to 2 w/w% of ceramide-like molecules and more than 10 w/w% of minoxidil incorporated within the oil droplets. This emulsions evidenced a good long-term stability, without any apparent modification for several weeks. Despite the fact that this work is limited to optimize the incorporation of the actives within the nanoemulsion-like formulations, it demonstrated that nanoemulsions should be considered as a very promising tool for enhancing the distribution and availability of hydrophobic molecules with technological interest.


Sign in / Sign up

Export Citation Format

Share Document