Techno-economic assessment of landfill gas (LFG) to electric energy: Selection of the optimal technology through field-study and model simulation

Chemosphere ◽  
2020 ◽  
pp. 128688
Author(s):  
Virginia Manasaki ◽  
Ioannis Palogos ◽  
Ioannis Chourdakis ◽  
Konstantinos Tsafantakis ◽  
Petros Gikas
2012 ◽  
Vol 19 (1) ◽  
pp. 39-48 ◽  
Author(s):  
Jarosław Zygarlicki ◽  
Janusz Mroczka

Variable-Frequency Prony Method in the Analysis of Electrical Power QualityThe article presents a new modification of the the least squares Prony method. The so-called variable-frequency Prony method can be a useful tool for estimating parameters of sinusoidal components, which, in the analyzed signal, are characterized by time-dependent frequencies. The authors propose use of the presented method for testing the quality of electric energy. It allows observation of phenomena which, when using traditional methods, are averaged in the analysis window. The proposed modification of least squares Prony method is based on introduction and specific selection of a frequency matrix. This matrix represents frequencies of estimated components and their variability in time.


2020 ◽  
Vol 0 (47) ◽  
pp. 44
Author(s):  
Yevgen Nahorniy ◽  
Olexandra Оrda ◽  
Denys Kondratenko

Author(s):  
U. Desideri ◽  
P. Lunghi ◽  
F. Zepparelli

The present work aims at evaluating the environmental impact caused by fuel cell systems in the production of electric energy. The very low pollutant emission levels in fuel cells makes them an attractive alternative in ultra clean energy conversion systems. Actually, to truly understand the environmental impact related to fuel cells, it is necessary to study their “cradle-to-grave” life, from the construction phase, during the conversion of primary fuel into hydrogen, to its disposal. The tool used in this analysis is the Life Cycle Assessment approach; in particular the environmental impact of a fuel cell system has been simulated through the software SimaPro 5.0. Thanks to this approach, once the critical process regarding the production of energy by fuel cell system, (i.e. the production of hydrogen by natural gas steam reforming), has been determined, an analysis of the use of landfill gas as a renewable source to produce hydrogen was done. Finally, the production of electric energy by fuel cell systems was compared to that by some conventional energy conversion systems. A second comparison was done between the Molten Carbonate Fuel Cell (MCFC) fuelled by landfill gas and natural gas.


Author(s):  
A. A. Butkarev ◽  
E. A. Butkareva

At present, mainly straight grate machines (SGM) and combined facilities grate-tube-type kiln-cooler (GKC) are used for heat-strengthening induration of iron ore pellets. Their total share in the produced iron ore pellets in the world accounts for 93%, of which SGM takes 60% and GKC – 33%, which speaks about high efficiency of both methods of induration. At the same time, when making decision on construction a pelletizing plant, a question of selection of most effective technology of iron ore pellets production by SGM and GKC often arises. Results of comparative analysis of efficiency of technologies of iron ore pellets production by SGM and GKC presented. Features of various ore types pellets induration considered as well as possibilities of ensuring the required quality of finished pellets at application for induration SGM and GKC. Data on maximum productivity of the considered induration facilities, amount of dust, fines formation, emissions of harmful substances into environment and electric energy consumption presented. Importance of a possibility of accounting of fuel type selection, of heat expenses for heat treatment, of expenses for maintenance, capital and operation costs were noted. It was shown that choice of a particular variant of technology should be done at the stage of elaboration feasibility study accounting existing experience of facilities running, availability of fuel types, cost of energy resources, climate zone and assembling solutions.


2020 ◽  
Vol 1012 ◽  
pp. 158-163
Author(s):  
Oliveira Marilei de Fátima ◽  
Mazur Viviane Teleginski ◽  
Virtuozo Fernanda ◽  
Junior Valter Anzolin de Souza

Nowadays, humanity has become aware of the consequences that the use of fossil fuels entails, and the latest developments in the energy sector are leading to a diversification of energy resources. In this context, researching on alternative forms of producing electric energy is being conducted. At the transportation level, a possible solution for this matter may lie in hydrogen fuel cells. The electrolysis of water is one of the possible processes for hydrogen production, but the reaction to break the water molecule requires a great amount of energy and this is precisely the biggest issue involving this process. In this work, low cost electrodes of 254 stainless steel and electrolytic graphite were used for hydrogen production, allowing high efficiency and reduced oxidation during the process. The selection of these materials allows to obtain a high corrosion resistance electrolytic pair, by replacing the high cost platinum electrode usually employed in the alkaline electrolysis process. The formic acid of biomass origin was used as an electrolyte. It was observed that the developed reactor have no energy losses through heat and it was possible to obtain approximately 82% conversion efficiency in the gas production process.


Author(s):  
R. P. Johnston ◽  
P. Ortiz

Details of the NASA sponsored General Electric Energy Efficient Engine (E3) technology program are presented along with a description of the engine, cycle and aircraft system benefits. Opportunities for further performance improvement beyond E3 are examined. Studies leading to the selection of the E3 cycle and configuration are summarized. The advanced technology features, cycle and component performance levels are also presented. An evaluation of the benefits of the fully developed Flight Propulsion System (FPS) is made relative to the NASA program goals by comparing the FPS with the CF6-50C where both are installed in advanced subsonic transport aircraft. Results indicate that a mission fuel saving from 15 to 23 percent is possible depending on mission length.


2010 ◽  
Vol 636-637 ◽  
pp. 1292-1299 ◽  
Author(s):  
Carlos Alves ◽  
Carlos Figueiredo ◽  
Paula Figueiredo ◽  
António Maurício ◽  
Luís Aires-Barros

Several types of stones (igneous, sedimentary and metamorphic) are found applied in pavements, stairs and walls of the underground stations of the Lisbon Metropolitan System, Portugal. A field study based solely on non-destructive and non invasive visual inspection of these stations is presented, aiming to identify different transformations of applied stones and discuss its relation with the stone characteristics. This field study has pointed to relevant issues regarding durability of stone materials namely when used in pavements and stairs. The most striking aspect is the frequently marked variable behaviour of stones from a given rock type under the same use conditions, with heterogeneities and discontinuities that seem to cause irregularity from the early stages and further increase with time, having more accentuated consequences (in terms of intensity of surface irregularity) in some types of limestones. The observations collected could be relevant for the discussion of characteristics relevant for the quality control of these materials (namely at the quarry level), including the selection of stones for future substitutions. There is, therefore, the need for a more complete study comprising detailed petrographic studies and laboratory tests both from the applied stones and from the supplying quarries.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
Shuai Liu ◽  
Zhijian Ji ◽  
Huizi Ma

Based on the Jordan form of system matrix, this paper discusses algebraic conditions for the controllability of the multiagent network system with directed graph from two aspects: leader-follower network attribute and coupling input disturbance. Leader-follower network attribute refers to the topology structure and information communication among agents. Coupling input disturbance includes the number of external coupling inputs and the selection of leader nodes. When the leader-follower network attribute is fixed, the selection method of coupling input disturbance is studied for the controllability, and when the coupling input disturbance is known, we derive necessity and sufficiency conditions to determine the controllability. The reliability of theoretical results is verified by numerical examples and model simulation. Besides, the generally perfect controllability is introduced, that is, the system is always controllable regardless of the number and the locations of leaders. In practical engineering applications, the perfectly controllable topology can improve the system fault tolerance and accelerate the commercialization process, which has a profound significance for promoting the modernization process.


Sign in / Sign up

Export Citation Format

Share Document