scholarly journals Effects of native leaf litter amendments on phosphorus mineralization in temperate floodplain soils

Chemosphere ◽  
2021 ◽  
Vol 266 ◽  
pp. 129210
Author(s):  
Mary R. Arenberg ◽  
Yuji Arai
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mary R. Arenberg ◽  
Yuji Arai

AbstractAs an essential component of enzymes, higher N availability from agricultural runoff to forest soils may boost the activity of phosphatase, increasing the bioavailability of phosphate. The objective of this study was to evaluate P mineralization rates in temperate floodplain soils as a function of inorganic N species (i.e., ammonium and nitrate) and amendment rate (1.5–3.5 g N kg−1). Accordingly, the soil was amended with nitrate and ammonium, and P dynamics were monitored during a 40-day incubation. The addition of ammonium significantly boosted acid and alkaline phosphatase activity by 1.39 and 1.44 µmol p-nitrophenol P (pNP) g−1 h−1, respectively. The degree of increase was positively correlated with the amendment rate. Likewise, the P mineralization rate increased by 0.27 mg P kg−1 in the 3.5 g N kg−1 ammonium treatment. 31P nuclear magnetic resonance spectroscopic analysis further supported the reduction in organic orthophosphate diesters on day 30. Meanwhile, the addition of nitrate promoted P mineralization to a lesser degree but did not increase phosphatase activity. While floodplain soils have great potential to sequester anthropogenic P, high availability of inorganic N, especially ammonium, could promote P mineralization, potentially increasing P fertility and/or reducing P the sequestration capacity of floodplain soils.


2018 ◽  
Vol 15 (22) ◽  
pp. 7043-7057 ◽  
Author(s):  
Martin Ley ◽  
Moritz F. Lehmann ◽  
Pascal A. Niklaus ◽  
Jörg Luster

Abstract. Semi-terrestrial soils such as floodplain soils are considered potential hot spots of nitrous oxide (N2O) emissions. Microhabitats in the soil – such as within and outside of aggregates, in the detritusphere, and/or in the rhizosphere – are considered to promote and preserve specific redox conditions. Yet our understanding of the relative effects of such microhabitats and their interactions on N2O production and consumption in soils is still incomplete. Therefore, we assessed the effect of aggregate size, buried leaf litter, and plant–soil interactions on the occurrence of enhanced N2O emissions under simulated flooding/drying conditions in a mesocosm experiment. We used two model soils with equivalent structure and texture, comprising macroaggregates (4000–250 µm) or microaggregates (<250 µm) from a N-rich floodplain soil. These model soils were planted with basket willow (Salix viminalis L.), mixed with leaf litter or left unamended. After 48 h of flooding, a period of enhanced N2O emissions occurred in all treatments. The unamended model soils with macroaggregates emitted significantly more N2O during this period than those with microaggregates. Litter addition modulated the temporal pattern of the N2O emission, leading to short-term peaks of high N2O fluxes at the beginning of the period of enhanced N2O emission. The presence of S. viminalis strongly suppressed the N2O emission from the macroaggregate model soil, masking any aggregate-size effect. Integration of the flux data with data on soil bulk density, moisture, redox potential and soil solution composition suggest that macroaggregates provided more favourable conditions for spatially coupled nitrification–denitrification, which are particularly conducive to net N2O production. The local increase in organic carbon in the detritusphere appears to first stimulate N2O emissions; but ultimately, respiration of the surplus organic matter shifts the system towards redox conditions where N2O reduction to N2 dominates. Similarly, the low emission rates in the planted soils can be best explained by root exudation of low-molecular-weight organic substances supporting complete denitrification in the anoxic zones, but also by the inhibition of denitrification in the zone, where rhizosphere aeration takes place. Together, our experiments highlight the importance of microhabitat formation in regulating oxygen (O2) content and the completeness of denitrification in soils during drying after saturation. Moreover, they will help to better predict the conditions under which hot spots, and “hot moments”, of enhanced N2O emissions are most likely to occur in hydrologically dynamic soil systems like floodplain soils.


2019 ◽  
Vol 70 (11) ◽  
pp. 1522 ◽  
Author(s):  
F. T. Watson ◽  
R. J. Smernik ◽  
A. L. Doolette ◽  
L. M. Mosley

Phosphorus (P) availability, which depends on both P concentration and speciation, often controls primary productivity and algal-bloom formation in river systems. The river P pool is also connected to P pools of adjacent sediments, soils and vegetation. Thus, informed management of P in floodplain–river systems requires detailed understanding of P concentration and speciation in all of these interconnected components. We studied P speciation in river sediments and water, floodplain soils and river red gum (Eucalyptus camaldulensis) leaf litter from the Lower Murray region using conventional spectroscopic measurements, solution 31P nuclear magnetic resonance (31P NMR) spectroscopy, and leaching experiments to simulate floodplain re-wetting of leaf litter. Almost all (&gt;85%) of the P in river sediments was in the orthophosphate form, whereas floodplain soils had higher proportions of organic P (PO) species. Both fresh and senescent river red gum leaf litter also had a much higher concentration of PO, primarily in the form of phytate. On submersion, there was a rapid (0–96h) loss of dissolved P from senescent leaves; release of dissolved organic carbon showed similar kinetics. Loss of P from the leaves included both organic and inorganic forms. The results have important implications for aquatic primary productivity and environmental management strategies.


2018 ◽  
Author(s):  
V.A. Borisov ◽  
I.Yu. Vasjuchkov ◽  
A.A. Kolomiets ◽  
O.N. Uspenskaya ◽  
A.V. Kornev

Установлено, что на пойменных почвах использование методов диагностики минерального питания растений моркови «по почве» и «по черешку» в фазу начала образования корнеплодов позволяет значительно (на 36–42%) снизить расход минеральных удобрений, обеспечивая урожайность моркови на уровне 70 т/га с долей стандартной продукции 78–81% без существенного изменения качества корнеплодов.It was found that in floodplain soils, the use of methods of diagnosis of mineral nutrition of carrot plants «on the soil» and «on the petiole» in the phase of the beginning of the formation of root crops can significantly (by 36–42%) reduce the consumption of mineral fertilizers, ensuring the yield of carrots at the level of 70 t/ha with a share of standard production of 78–81% without significantly changing the quality of root crops.


2013 ◽  
Vol 12 (11) ◽  
pp. 2107-2116 ◽  
Author(s):  
Marija Tamkeviciute ◽  
Jolita Dudaite ◽  
Edita Baltrenaite ◽  
Xavier Ubeda

2020 ◽  
Vol 29 (2) ◽  
pp. 278-283
Author(s):  
S.G. Ermilov

The oribatid mite subgenus Scheloribates (Topobates) Grandjean, 1958, is recorded from the Neotropical region for the first time. A new species of this subgenus is described from the leaf litter collected in Cayo Agua Island, Panama. Scheloribates (Topobates) panamaensis sp. nov. differs from its related species by the very large body size and presence of a strong ventrodistal process on the leg femora II–IV.


Sign in / Sign up

Export Citation Format

Share Document