Comparison of naphthalene removal performance using H2O2, sodium percarbonate and calcium peroxide oxidants activated by ferrous ions and degradation mechanism

Chemosphere ◽  
2021 ◽  
pp. 131209
Author(s):  
Rumin Yang ◽  
Guilu Zeng ◽  
Zhiqiang Xu ◽  
Zhengyuan Zhou ◽  
Jingyao Huang ◽  
...  
Author(s):  
Xuecheng Sun ◽  
Xiaogang Gu ◽  
Shuguang Lyu

Abstract The chlorobenzene (CB) degradation performances by various oxidants, including hydrogen peroxide (H2O2), nanoscale calcium peroxide (nCaO2) and sodium percarbonate (SPC), activated with ferrous iron (Fe(II)) were investigated and thoroughly compared. The results showed that all tested systems had strong abilities to degrade CB. The CB removal rate increased with increasing dosages of oxidants or Fe(II) because the generation of reactive oxygen species could be promoted with the chemical dosages' increase. Response surface and contour plots showed that CB could achieve a better removal performance at the same H2O2 and Fe(II) molar content, but the Fe(II) dosage was higher than that of oxidants in the nCaO2 and SPC systems. The optimal molar ratios of H2O2/Fe(II)/CB, nCaO2/Fe(II)/CB and SPC /Fe(II)/CB were 5.2/7.6/1, 8/8/1, and 4.5/8/1, respectively, in which 98.1%, 98%, and 96.4% CB removals could be obtained in 30 min reaction. The optimal pH condition was around 3, while CB removal rates were less than 20% in all three systems when the initial pH was adjusted to 9. The oxidative hydroxyl radicals (HO•) and singlet oxygen (1O2) had been detected by the electron paramagnetic resonance test. Based upon the results of liquid chromatograph-mass spectrometer analysis, the pathways of CB degradation were proposed, in which 1O2 roles were elaborated innovatively in the CB degradation mechanism. The CB degradation performance was significantly affected in actual groundwater, while increasing the molar ratio of oxidant/Fe(II)/CB was an effective way to overcome the adverse effects caused by the complex of actual groundwater matrix.


2017 ◽  
Vol 5 (12) ◽  
pp. 2437-2447 ◽  
Author(s):  
John P. McQuilling ◽  
Sivanandane Sittadjody ◽  
Samuel Pendergraft ◽  
Alan C. Farney ◽  
Emmanuel C. Opara

In this work, sodium percarbonate and calcium peroxide were utilized as an oxygen source to improve islet viability and functionality.


2019 ◽  
Vol 476 (21) ◽  
pp. 3333-3353 ◽  
Author(s):  
Malti Yadav ◽  
Kamalendu Pal ◽  
Udayaditya Sen

Cyclic dinucleotides (CDNs) have emerged as the central molecules that aid bacteria to adapt and thrive in changing environmental conditions. Therefore, tight regulation of intracellular CDN concentration by counteracting the action of dinucleotide cyclases and phosphodiesterases (PDEs) is critical. Here, we demonstrate that a putative stand-alone EAL domain PDE from Vibrio cholerae (VcEAL) is capable to degrade both the second messenger c-di-GMP and hybrid 3′3′-cyclic GMP–AMP (cGAMP). To unveil their degradation mechanism, we have determined high-resolution crystal structures of VcEAL with Ca2+, c-di-GMP-Ca2+, 5′-pGpG-Ca2+ and cGAMP-Ca2+, the latter provides the first structural basis of cGAMP hydrolysis. Structural studies reveal a typical triosephosphate isomerase barrel-fold with substrate c-di-GMP/cGAMP bound in an extended conformation. Highly conserved residues specifically bind the guanine base of c-di-GMP/cGAMP in the G2 site while the semi-conserved nature of residues at the G1 site could act as a specificity determinant. Two metal ions, co-ordinated with six stubbornly conserved residues and two non-bridging scissile phosphate oxygens of c-di-GMP/cGAMP, activate a water molecule for an in-line attack on the phosphodiester bond, supporting two-metal ion-based catalytic mechanism. PDE activity and biofilm assays of several prudently designed mutants collectively demonstrate that VcEAL active site is charge and size optimized. Intriguingly, in VcEAL-5′-pGpG-Ca2+ structure, β5–α5 loop adopts a novel conformation that along with conserved E131 creates a new metal-binding site. This novel conformation along with several subtle changes in the active site designate VcEAL-5′-pGpG-Ca2+ structure quite different from other 5′-pGpG bound structures reported earlier.


2019 ◽  
Author(s):  
C. Tigrine ◽  
A. Kameli

In this study a polyphenolic extract from Cleome arabica leaves (CALE) was investigated for its antioxidant activity in vitro using DPPH•, metal chelating and reducing power methods and for its protective effects against AraC-induced hematological toxicity in vivo using Balb C mice. Results indicated that CALE exhibited a strong and dose-dependent scavenging activity against the DPPH• free radical (IC50 = 4.88 μg/ml) and a high reducing power activity (EC50 = 4.85 μg/ml). Furthermore, it showed a good chelating effects against ferrous ions (IC50 = 377.75 μg/ml). The analysis of blood showed that subcutaneous injection of AraC (50 mg/kg) to mice during three consecutive days caused a significant myelosupression (P < 0.05). The combination of CALE and AraC protected blood cells from a veritable toxicity. Where, the number of the red cells, the amount of hemoglobin and the percentage of the hematocrite were significantly high. On the other hand, AraC cause an elevation of body temperature (39 °C) in mice. However, the temperature of the group treated with CALE and AraC remained normal and did not exceed 37.5 °C. The observed biological effects of CALE, in vitro as well as in vivo, could be due to the high polyphenol and flavonoid contents. In addition, the antioxidant activity of CALE suggested to be responsible for its hematoprotective effect.


Proceedings ◽  
2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Youssra El Qasemy ◽  
Abdelfatah Achahbar ◽  
Abdellatif Khamlichi

The stochastic behavior of wind speed is a particular characteristic of wind energy production, which affects the degradation mechanism of the turbine, resulting in stochastic charging on the wind turbine. A model stochastic is used in this study to evaluate the efficiency of wind turbine power of whatever degree given fluctuating wind turbulence data. This model is based on the Langevin equations, which characterize, by two coefficients, drift and diffusion functions. These coefficients describe the behavior of the transformation process from the input wind speed to the output data that need to be determined. For this present work, the computation of drift and diffusion functions has been carried out by using the stochastic model to assess the output variables in terms of the torque and power curves as a function of time, and it is compared by the classical method. The results show that the model stochastic can define the efficiency of wind turbine generation more precisely.


2017 ◽  
Vol 68 (2) ◽  
pp. 317-322
Author(s):  
Anca Mihaela Mocanu ◽  
Constantin Luca ◽  
Alina Costina Luca

The purpose of this research is to synthetize, characterize and thermal degradation of new heterolytic derivates with potential biological properties. The derivates synthesis was done by obtaining new molecules with pyralozone structure which combine two pharmacophore entities: the amidosulfonyl-R1,R2 phenoxyacetil with the 3,5-dimethyl pyrazole which can have potential biological properties. The synthesis stages of the new products are presented as well as the elemental analysis data and IR, 1H-NMR spectral measurements made for elucidating the chemical structures and thermostability study which makes evident the temperature range proper for their use and storage. The obtained results were indicative of a good correlation of the structure with the thermal stability as estimated by means of the initial degradation temperatures as well as with the degradation mechanism by means of the TG-FTIR analysis.


2004 ◽  
Vol 1 (5) ◽  
pp. 429-440 ◽  
Author(s):  
Noritaka Nakamichi ◽  
Hirotaka Oikawa ◽  
Yuki Kambe ◽  
Yukio Yoneda

Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1338 ◽  
Author(s):  
Klara Perović ◽  
Francis M. dela Rosa ◽  
Marin Kovačić ◽  
Hrvoje Kušić ◽  
Urška Lavrenčič Štangar ◽  
...  

Clean water and the increased use of renewable energy are considered to be two of the main goals in the effort to achieve a sustainable living environment. The fulfillment of these goals may include the use of solar-driven photocatalytic processes that are found to be quite effective in water purification, as well as hydrogen generation. H2 production by water splitting and photocatalytic degradation of organic pollutants in water both rely on the formation of electron/hole (e−/h+) pairs at a semiconducting material upon its excitation by light with sufficient photon energy. Most of the photocatalytic studies involve the use of TiO2 and well-suited model compounds, either as sacrificial agents or pollutants. However, the wider application of this technology requires the harvesting of a broader spectrum of solar irradiation and the suppression of the recombination of photogenerated charge carriers. These limitations can be overcome by the use of different strategies, among which the focus is put on the creation of heterojunctions with another narrow bandgap semiconductor, which can provide high response in the visible light region. In this review paper, we report the most recent advances in the application of TiO2 based heterojunction (semiconductor-semiconductor) composites for photocatalytic water treatment and water splitting. This review article is subdivided into two major parts, namely Photocatalytic water treatment and Photocatalytic water splitting, to give a thorough examination of all achieved progress. The first part provides an overview on photocatalytic degradation mechanism principles, followed by the most recent applications for photocatalytic degradation and mineralization of contaminants of emerging concern (CEC), such as pharmaceuticals and pesticides with a critical insight into removal mechanism, while the second part focuses on fabrication of TiO2-based heterojunctions with carbon-based materials, transition metal oxides, transition metal chalcogenides, and multiple composites that were made of three or more semiconductor materials for photocatalytic water splitting.


Sign in / Sign up

Export Citation Format

Share Document