Simultaneous removal of heavy metal ions using carbon dots-doped hydrogel particles

Chemosphere ◽  
2021 ◽  
pp. 131760
Author(s):  
Suguna Perumal ◽  
Raji Atchudan ◽  
Periyasamy Thirukumaran ◽  
Dong Ho Yoon ◽  
Yong Rok Lee ◽  
...  
2019 ◽  
Vol 6 (4) ◽  
pp. 1121-1130 ◽  
Author(s):  
Francisco Yarur ◽  
Jun-Ray Macairan ◽  
Rafik Naccache

Classical methods for the detection of heavy metal ions in water are tedious and time consuming.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 315 ◽  
Author(s):  
Musa Yahaya Pudza ◽  
Zurina Zainal Abidin ◽  
Suraya Abdul Rashid ◽  
Faizah Md Yasin ◽  
A. S. M. Noor ◽  
...  

The materials and substances required for sustainable water treatment by adsorption technique, are still being researched widely by distinguished classes of researchers. Thus, the need to synthesize substances that can effectively clean up pollutants from the environment cannot be overemphasized. So far, materials in bulk forms that are rich in carbon, such as biochar and varieties of activated carbon have been used for various adsorptive purposes. The use of bulk materials for such purposes are not efficient due to minimal surface areas available for adsorption. This study explores the adsorption task at nano dimension using carbon dots (CDs) from tapioca. The properties of carbon structure and its influence on the adsorptive efficacy of carbon nanoparticles were investigated by energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), high resolution transmission electron microscopy (HrTEM), and atomic force microscopy (AFM). The results implied carbon present in CDs are good adsorbents for effective adsorption of heavy metal ions (lead) with removal efficiency of 80.6% in aqueous environment. The adsorption process as explored by both Langmuir and Freundlich isotherms have proven favorability of the adsorption process. Langmuir form two and three have correlation coefficients R2 at 0.9922 and 0.9912, respectively. The Freundlich isotherm confirms CDs as having defined surface heterogeneity and the exponential distribution of active sites. The adsorption of lead unto CDs obeyed the second order kinetic model with coefficient of determination, R2 of 0.9668 and 0.9996 at an initial lead concentration of 20 mg/L and 100 mg/L, respectively. The findings validated the efficiency of CDs derived from tapioca as an excellent material for further utilization in the environmental fields of wastewater pollution detection and clean up, bio-imaging, and chemical sensing applications.


Author(s):  
Wanjie Xie ◽  
Esfandiar Pakdel ◽  
Yujia Liang ◽  
Dan Liu ◽  
Lu Sun ◽  
...  

Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 121
Author(s):  
Hojung Choi ◽  
Taehyoung Kim ◽  
Sang Youl Kim

Poly(amidoamine)s (PAMAM) are very effective in the removal of heavy metal ions from water due to their abundant amine and amide functional groups, which have a high binding ability to heavy metal ions. We synthesized a new class of hyperbranched poly(amidehydrazide) (PAMH) hydrogel particles from dihydrazides and N,N′-methylenebisacrylamide (MBA) monomer by using the A2 + B4 polycondensation reaction in an inverse suspension polymerization process. In Cd2+ and Cu2+ ion sorption tests, the synthesized dihydrazide-based PAMH hydrogel particles exhibited sorption capacities of 85 mg/g for copper and 47 mg/g for cadmium. Interestingly, the PAMH showed only a 10% decrease in sorption ability in an acidic condition (pH = 4) compared to the diamine-based hyperbranched PAMAM, which showed a ~90% decrease in sorption ability at pH of 4. In addition, PAMH hydrogel particles remove trace amounts of copper (0.67 ppm) and cadmium (0.5 ppm) in water, below the detection limit.


Sign in / Sign up

Export Citation Format

Share Document