scholarly journals Predicting glass-to-glass and liquid-to-liquid phase transitions in supercooled water using classical nucleation theory

2018 ◽  
Vol 500 ◽  
pp. 45-53 ◽  
Author(s):  
Robert F. Tournier
2020 ◽  
Author(s):  
Ammon E. Posey ◽  
Kiersten M. Ruff ◽  
Jared M. Lalmansingh ◽  
Tejbir S. Kandola ◽  
Jeffrey J. Lange ◽  
...  

AbstractThe combination of phase separation and disorder-to-order transitions can give rise to ordered, semi-crystalline fibrillar assemblies that underlie prion phenomena namely, the non-Mendelian transfer of information across cells. Recently, a method known as Distributed Amphifluoric Förster Resonance Energy Transfer (DAmFRET) was developed to study the convolution of phase separation and disorder-to-order transitions in live cells. In this assay, a protein of interest is expressed to a broad range of concentrations and the acquisition of local density and order, measured by changes in FRET, is used to map phase transitions for different proteins. The high-throughput nature of this assay affords the promise of uncovering sequence-to-phase behavior relationships in live cells. Here, we report the development of a supervised method to obtain automated and accurate classifications of phase transitions quantified using the DAmFRET assay. Systems that we classify as undergoing two-state discontinuous transitions are consistent with prion-like behaviors, although the converse is not always true. We uncover well-established and surprising new sequence features that contribute to two-state phase behavior of prion-like domains. Additionally, our method enables quantitative, comparative assessments of sequence-specific driving forces for phase transitions in live cells. Finally, we demonstrate that a modest augmentation of DAmFRET measurements, specifically time-dependent protein expression profiles, can allow one to apply classical nucleation theory to extract sequence-specific lower bounds on the probability of nucleating ordered assemblies. Taken together, our approaches lead to a useful analysis pipeline that enables the extraction of mechanistic inferences regarding phase transitions in live cells.


Science ◽  
2012 ◽  
Vol 338 (6103) ◽  
pp. 87-90 ◽  
Author(s):  
Ziren Wang ◽  
Feng Wang ◽  
Yi Peng ◽  
Zhongyu Zheng ◽  
Yilong Han

The nucleation process is crucial to many phase transitions, but its kinetics are difficult to predict and measure. We superheated and melted the interior of thermal-sensitive colloidal crystals and investigated by means of video microscopy the homogeneous melting at single-particle resolution. The observed nucleation precursor was local particle-exchange loops surrounded by particles with large displacement amplitudes rather than any defects. The critical size, incubation time, and shape and size evolutions of the nucleus were measured. They deviate from the classical nucleation theory under strong superheating, mainly because of the coalescence of nuclei. The superheat limit agrees with the measured Born and Lindemann instabilities.


2019 ◽  
Vol 116 (17) ◽  
pp. 8184-8189 ◽  
Author(s):  
Robert O. David ◽  
Claudia Marcolli ◽  
Jonas Fahrni ◽  
Yuqing Qiu ◽  
Yamila A. Perez Sirkin ◽  
...  

Ice nucleation in the atmosphere influences cloud properties, altering precipitation and the radiative balance, ultimately regulating Earth’s climate. An accepted ice nucleation pathway, known as deposition nucleation, assumes a direct transition of water from the vapor to the ice phase, without an intermediate liquid phase. However, studies have shown that nucleation occurs through a liquid phase in porous particles with narrow cracks or surface imperfections where the condensation of liquid below water saturation can occur, questioning the validity of deposition nucleation. We show that deposition nucleation cannot explain the strongly enhanced ice nucleation efficiency of porous compared with nonporous particles at temperatures below −40 °C and the absence of ice nucleation below water saturation at −35 °C. Using classical nucleation theory (CNT) and molecular dynamics simulations (MDS), we show that a network of closely spaced pores is necessary to overcome the barrier for macroscopic ice-crystal growth from narrow cylindrical pores. In the absence of pores, CNT predicts that the nucleation barrier is insurmountable, consistent with the absence of ice formation in MDS. Our results confirm that pore condensation and freezing (PCF), i.e., a mechanism of ice formation that proceeds via liquid water condensation in pores, is a dominant pathway for atmospheric ice nucleation below water saturation. We conclude that the ice nucleation activity of particles in the cirrus regime is determined by the porosity and wettability of pores. PCF represents a mechanism by which porous particles like dust could impact cloud radiative forcing and, thus, the climate via ice cloud formation.


2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Mike Sleutel ◽  
Jim Lutsko ◽  
Alexander E.S. Van Driessche ◽  
Miguel A. Durán-Olivencia ◽  
Dominique Maes

2010 ◽  
Vol 10 (16) ◽  
pp. 7945-7961 ◽  
Author(s):  
M. E. Earle ◽  
T. Kuhn ◽  
A. F. Khalizov ◽  
J. J. Sloan

Abstract. Temperature-dependent volume nucleation rate coefficients for supercooled water droplets, JV(T), are derived from infrared extinction measurements in a cryogenic laminar aerosol flow tube using a microphysical model. The model inverts water and ice aerosol size distributions retrieved from experimental extinction spectra by considering the evolution of a measured initial droplet distribution via homogeneous nucleation and the exchange of vapour-phase water along a well-defined temperature profile. Experiment and model results are reported for supercooled water droplets with mean radii of 1.0, 1.7, and 2.9 μm. Values of mass accommodation coefficients for evaporation of water droplets and vapour deposition on ice particles are also determined from the model simulations. The coefficient for ice deposition was found to be 0.031 ± 0.001, while that for water evaporation was 0.054 ± 0.012. Results are considered in terms of the applicability of classical nucleation theory to the freezing of micrometre-sized droplets in cirrus clouds, with implications for the parameterization of homogeneous ice nucleation in numerical models.


Author(s):  
Jürn W.P. Schmelzer

Different aspects in applying the nucleation theorem to the description of crystallization of liquids are analyzed. It is shown that, by employing the classical Gibbs' approach in the thermodynamic description of heterogeneous systems and assuming that the basic assumptions of classical nucleation theory commonly employed in application to crystallization hold, a general form of the nucleation theorem can be formulated valid not only for one-component but generally for multi-component systems. This result is taken then as the starting point for the derivation of particular forms of this theorem for the cases that the deviation from equilibrium is caused by variations of either composition of the liquid phase, temperature, or pressure. In this procedure, recently developed by us expressions for the curvature dependence of the surface tension, respectively, the dependence of the surface tension on pressure and/or temperature are employed. It is shown that the formulation of the nucleation theorem as proposed by Kashchiev [J. Chem. Phys. 76, 5098-5102 (1982)] holds also for multi-component systems as far as mentioned above assumptions are fulfilled. In the application of classical nucleation theory to crystallization processes it is assumed as one of its basic ingredients that the bulk properties of the critical clusters are widely identical to the properties of the newly evolving crystal phase. This assumption is, however, in general, it is not true. This limitation of the theoretical description can be overcome by the application of the generalized Gibbs approach for the specification of the dependence of the properties of critical crystal clusters on the degree of metastability of the liquid phase. Applying this method, it is demonstrated that a similar formulation of the nucleation theorem as derived based on classical nucleation theory holds true also in cases when a dependence of the state parameters of the critical clusters on the degree of deviation from equilibrium is appropriately accounted for.


Entropy ◽  
2019 ◽  
Vol 21 (12) ◽  
pp. 1147 ◽  
Author(s):  
Jürn W. P. Schmelzer

Different aspects in applying the nucleation theorem to the description of crystallization of liquids are analyzed. It is shown that, by employing the classical Gibbs’ approach in the thermodynamic description of heterogeneous systems, a general form of the nucleation theorem can be formulated that is valid not only for one-component but generally for multi-component systems. In this analysis, one basic assumption of classical nucleation theory is utilized. In addition, commonly employed in application to crystallization, it is supposed that the bulk properties of the critical clusters are widely identical to the properties of the newly evolving crystal phase. It is shown that the formulation of the nucleation theorem as proposed by Kashchiev [J. Chem. Phys. 76, 5098-5102 (1982)], also relying widely on the standard classical approach in the description of crystal nucleation, holds for multi-component systems as well. The general form of the nucleation theorem derived by us is taken then as the starting point for the derivation of particular forms of this theorem for the cases that the deviation from equilibrium is caused by variations of either composition of the liquid phase, temperature, or pressure. In this procedure, expressions recently developed by us for the curvature dependence of the surface tension, respectively, its dependence on pressure and/or temperature are employed. The basic assumption of classical nucleation theory mentioned above is, however, in general, not true. The bulk and surface properties of the critical crystal clusters may differ considerably from the properties of the evolving macroscopic phases. Such effects can be incorporated into the theoretical description by the application of the generalized Gibbs approach for the specification of the dependence of the properties of critical crystal clusters on the degree of metastability of the liquid phase. Applying this method, it is demonstrated that a similar formulation of the nucleation theorem, as derived based on classical nucleation theory, holds true also in cases when a dependence of the state parameters of the critical clusters on the degree of deviation from equilibrium is appropriately accounted for.


2009 ◽  
Vol 9 (5) ◽  
pp. 22883-22927 ◽  
Author(s):  
M. E. Earle ◽  
T. Kuhn ◽  
A. F. Khalizov ◽  
J. J. Sloan

Abstract. Temperature-dependent volume nucleation rate coefficients for supercooled water droplets, JV(T), are derived from infrared extinction measurements in a cryogenic laminar aerosol flow tube using a microphysical model. The model inverts water and ice aerosol size distributions retrieved from experimental extinction spectra by considering the evolution of a measured initial droplet distribution via homogeneous nucleation and the exchange of vapour-phase water along a well-defined temperature profile. Experiment and model results are reported for supercooled water droplets with mode radii of 1.0, 1.7, and 2.9 μm. Values of mass accommodation coefficients for evaporation of water droplets and vapour deposition on ice particles are also determined from the model simulations. The coefficient for ice deposition was found to be approximately 0.031, while that for water evaporation was 0.054. Results are considered in terms of the applicability of classical nucleation theory to the freezing of micrometre-sized droplets in cirrus clouds, with implications for the parameterization of homogeneous ice nucleation in numerical models.


IUCrJ ◽  
2020 ◽  
Vol 7 (2) ◽  
pp. 331-341 ◽  
Author(s):  
M. M. H. Smets ◽  
E. Kalkman ◽  
A. Krieger ◽  
P. Tinnemans ◽  
H. Meekes ◽  
...  

During single-crystal-to-single-crystal (SCSC) phase transitions, a polymorph of a compound can transform to a more stable form while remaining in the solid state. By understanding the mechanism of these transitions, strategies can be developed to control this phenomenon. This is particularly important in the pharmaceutical industry, but also relevant for other industries such as the food and agrochemical industries. Although extensive literature exists on SCSC phase transitions in inorganic crystals, it is unclear whether their classications and mechanisms translate to molecular crystals, with weaker interactions and more steric hindrance. A comparitive study of SCSC phase transitions in aliphatic linear-chain amino acid crystals, both racemates and quasi-racemates, is presented. A total of 34 transitions are considered and most are classified according to their structural change during the transition. Transitions without torsional changes show very different characteristics, such as transition temperature, enthalpy and free energy, compared with transitions that involve torsional changes. These differences can be rationalized using classical nucleation theory and in terms of a difference in mechanism; torsional changes occur in a molecule-by-molecule fashion, whereas transitions without torsional changes involve cooperative motion with multiple molecules at the same time.


Sign in / Sign up

Export Citation Format

Share Document