Impact of impeller modelling approaches on SBES simulations of flow and residence time in a draft tube reactor

Author(s):  
Gary J. Brown ◽  
David F. Fletcher ◽  
Jeremy W. Leggoe ◽  
David S. Whyte
2016 ◽  
Author(s):  
Y. Huang ◽  
M. M. Coggon ◽  
R. Zhao ◽  
H. Lignell ◽  
M. U. Bauer ◽  
...  

Abstract. Flow tube reactors are employed to study gas-phase atmospheric chemistry and secondary organic aerosol formation. A new laminar flow tube reactor, the Caltech PhotoOxidation flow Tube (CPOT), has been designed with the aim of achieving a well-characterized fluid dynamic and residence time environment. We present here the design and fluid dynamical characterization of the CPOT, based on the fundamental behavior of vapor molecules and particles in the reactor. The design of the inlet of the CPOT, which was based on computational fluid dynamics (CFD) simulations, comprises a static mixer and a conical diffuser to facilitate rapid development of the characteristic laminar flow parabolic profile. A CFD laminar flow model is developed to simulate the residence time distribution (RTD) of vapor molecules and particles in the CPOT. To assess the extent to which the actual performance adheres to the theoretical CFD model, RTD experiments were conducted with O3 and sub-micrometer ammonium sulfate particles. The measured RTD profiles do not strictly adhere to theory, owing to slightly non-isothermal conditions in the reactor, which lead to secondary flows. Introducing an enhanced eddy-like diffusivity for the vapor molecules and particles in the laminar flow model significantly improves the model-experiment agreement. These characterization experiments, in addition to the idealized computational behavior, provide a basis on which to evaluate the performance of the CPOT as a chemical reactor.


Fuel ◽  
2019 ◽  
Vol 252 ◽  
pp. 37-46
Author(s):  
Sascha Rußig ◽  
Victor Gonzalez ◽  
Martin Schurz ◽  
Steffen Krzack ◽  
Jörg Kleeberg ◽  
...  

2009 ◽  
Vol 190 (3) ◽  
pp. 319-323 ◽  
Author(s):  
Donata Konopacka-Łyskawa ◽  
Zbigniew Cisiak ◽  
Bożenna Kawalec-Pietrenko

2020 ◽  
Vol 8 (3) ◽  
pp. 1220-1231

This paper focuses on the grasp of a deep understanding of flow behavior in a coiled tube reactor through Residence Time Distribution (RTD) studies. The reactors, in general, are classified ideally: mixed and plug-flow patterns. Unfortunately, in the real world, it has been observed that they show very different behavior from that expected. Thus, the characterization of the nonideal coiled tube reactor is needed to carry out. The calculations were carried out in the Matlab for distribution of residence time of the coiled tube reactor that is used in the Chemical Reaction Engineering Laboratory at MIET College. Pulse input tests were used significantly to analyzed the flow behavior using methylene blue (MB) tracer. A significant disparity in RTD curves in the presence of the secondary flow was examined and data were recorded. Finally, a suitable mathematical model was selected from the Tank in Series (TIS) and Axial Dispersion Models (ADMs) based on residual error and was used to validate these outcomes. The deconvoluted of the signal was used to get Cin for the verification of the pulse input behavior. The results were compared with the experimental data that concluded the modeling of the reactor is in good agreement.


2003 ◽  
Vol 48 (1) ◽  
pp. 171-178 ◽  
Author(s):  
M. Yoshino ◽  
M. Yao ◽  
H. Tsuno ◽  
I. Somiya

Removal of phosphorus and nitrogen is required to prevent eutrophication problems in lakes and enclosed coastal seas. And recovery of phosphorus from wastewater has been attracting attention because of lack in phosphorus resources in the near future. In this study, reaction kinetics and design parameters of struvite production are experimentally investigated by using basic reaction type and a draft-tube type reactors. Struvite production rate, which is a very important parameter in reactor design and efficiency estimation, is formulated in an equation consisting of a rate constant (k2), and magnesium, phosphate and ammonium concentrations. The value of k2 is shown to be increased with struvite concentration and mixing intensity in the reactor. The developed equation is applied to the results obtained from the draft-tube type reactor experiments and verified for its applicability. High struvite concentration of 10-25% is maintained in the draft-tube reactor experiments. 92% removal and recovery efficiency with effluent phosphorus concentration of 17 mg/L is achieved under the conditions of 4 minutes reaction time, pH of 8.5 and Mg/P molar ratio of 1.1.


Sign in / Sign up

Export Citation Format

Share Document