scholarly journals A Cell-Intrinsic Inhibitor of HIV-1 Reverse Transcription in CD4+ T Cells from Elite Controllers

2014 ◽  
Vol 15 (6) ◽  
pp. 717-728 ◽  
Author(s):  
Jin Leng ◽  
Hsin-Pin Ho ◽  
Maria J. Buzon ◽  
Florencia Pereyra ◽  
Bruce D. Walker ◽  
...  
2011 ◽  
Vol 85 (18) ◽  
pp. 9646-9650 ◽  
Author(s):  
M. J. Buzon ◽  
K. Seiss ◽  
R. Weiss ◽  
A. L. Brass ◽  
E. S. Rosenberg ◽  
...  
Keyword(s):  
T Cells ◽  
Ex Vivo ◽  

2010 ◽  
Vol 85 (6) ◽  
pp. 3015-3019 ◽  
Author(s):  
F. Vigneault ◽  
M. Woods ◽  
M. J. Buzon ◽  
C. Li ◽  
F. Pereyra ◽  
...  

Retrovirology ◽  
2012 ◽  
Vol 9 (1) ◽  
Author(s):  
Benjamin Descours ◽  
Alexandra Cribier ◽  
Christine Chable-Bessia ◽  
Diana Ayinde ◽  
Gillian Rice ◽  
...  

2011 ◽  
Vol 121 (4) ◽  
pp. 1549-1560 ◽  
Author(s):  
Huabiao Chen ◽  
Chun Li ◽  
Jinghe Huang ◽  
Thai Cung ◽  
Katherine Seiss ◽  
...  
Keyword(s):  
T Cells ◽  

2015 ◽  
Vol 90 (2) ◽  
pp. 904-916 ◽  
Author(s):  
Benjamin Trinité ◽  
Chi N. Chan ◽  
Caroline S. Lee ◽  
David N. Levy

ABSTRACTHIV-1 infection leads to the progressive depletion of the CD4 T cell compartment by various known and unknown mechanisms.In vivo, HIV-1 infects both activated and resting CD4 T cells, butin vitro, in the absence of any stimuli, resting CD4 T cells from peripheral blood are resistant to infection. This resistance is generally attributed to an intracellular environment that does not efficiently support processes such as reverse transcription (RT), resulting in abortive infection. Here, we show thatin vitroHIV-1 infection of resting CD4 T cells induces substantial cell death, leading to abortive infection.In vivo, however, various microenvironmental stimuli in lymphoid and mucosal tissues provide support for HIV-1 replication. For example, common gamma-chain cytokines (CGCC), such as interleukin-7 (IL-7), render resting CD4 T cells permissible to HIV-1 infection without inducing T cell activation. Here, we find that CGCC primarily allow productive infection by preventing HIV-1 triggering of apoptosis, as evidenced by early release of cytochromecand caspase 3/7 activation. Cell death is triggered both by products of reverse transcription and by virion-borne Vpr protein, and CGCC block both mechanisms. When HIV-1 RT efficiency was enhanced by SIVmac239 Vpx protein, cell death was still observed, indicating that the speed of reverse transcription and the efficiency of its completion contributed little to HIV-1-induced cell death in this system. These results show that a major restriction on HIV-1 infection in resting CD4 T cells resides in the capacity of these cells to survive the early steps of HIV-1 infection.IMPORTANCEA major consequence of HIV-1 infection is the destruction of CD4 T cells. Here, we show that delivery of virion-associated Vpr protein and the process of reverse transcription are each sufficient to trigger apoptosis of resting CD4 T cells isolated from peripheral blood. While these 2 mechanisms have been previously described in various cell types, we show for the first time their concerted effect in inducing resting CD4 T cell depletion. Importantly, we found that cytokines such as IL-7 and IL-4, which are particularly active in sites of HIV-1 replication, protect resting CD4 T cells from these cytopathic effects and, primarily through this protection, rather than through enhancement of specific replicative steps, they promote productive infection. This study provides important new insights for the understanding of the early steps of HIV-1 infection and T cell depletion.


2017 ◽  
Vol 61 (9) ◽  
Author(s):  
Chi N. Chan ◽  
Benjamin Trinité ◽  
David N. Levy

ABSTRACT HIV-1 infection of resting CD4 T cells plays a crucial and numerically dominant role during virus transmission at mucosal sites and during subsequent acute replication and T cell depletion. Resveratrol and pterostilbene are plant stilbenoids associated with several health-promoting benefits. Resveratrol has been shown to inhibit the replication of several viruses, including herpes simplex viruses 1 and 2, papillomaviruses, severe acute respiratory syndrome virus, and influenza virus. Alone, resveratrol does not inhibit HIV-1 infection of activated T cells, but it does synergize with nucleoside reverse transcriptase inhibitors in these cells to inhibit reverse transcription. Here, we demonstrate that resveratrol and pterostilbene completely block HIV-1 infection at a low micromolar dose in resting CD4 T cells, primarily at the reverse transcription step. The anti-HIV effect was fully reversed by exogenous deoxynucleosides and Vpx, an HIV-1 and simian immunodeficiency virus protein that increases deoxynucleoside triphosphate (dNTP) levels. These findings are consistent with the reported ability of resveratrol to inhibit ribonucleotide reductase and to lower dNTP levels in cells. This study supports the potential use of resveratrol, pterostilbene, or related compounds as adjuvants in anti-HIV preexposure prophylaxis (PrEP) formulations.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Fadila Larguet ◽  
Clément Caté ◽  
Benoit Barbeau ◽  
Eric Rassart ◽  
Elsy Edouard

Abstract Background HIV-1 hijacks the cellular machinery for its own replication through protein-protein interactions between viral and host cell factors. One strategy against HIV-1 infection is thus to target these key protein complexes. As the integration of reverse transcribed viral cDNA into a host cell chromosome is an essential step in the HIV-1 life cycle, catalyzed by the viral integrase and other important host factors, we aimed at identifying new integrase binding partners through a novel approach. Methods A LTR-derived biotinylated DNA fragment complexed with the integrase on magnetic beads was incubated with extracts from integrase-expressing 293 T cells. Liquid chromatography-mass spectrometry/mass spectrometry and co-immunoprecipitation/pull-down experiments were used for the identification of binding partners. Transfections of histone deacetylase 1 (HDAC1) expression vectors and/or specific siRNA were conducted in HeLa-CD4 and 293 T cells followed by infection with fully infectious NL4–3 and luciferase-expressing pseudotyped viruses or by proviral DNA transfection. Fully infectious and pseudotyped viruses produced from HDAC1-silenced 293 T cells were tested for their infectivity toward HeLa-CD4 cells, T cell lines and primary CD4+ T cells. Late RT species and integrated viral DNA were quantified by qPCR and infectivity was measured by luciferase activity and p24 ELISA assay. Results were analyzed by the Student’s t-test. Results Using our integrase-LTR bait approach, we successfully identified new potential integrase-binding partners, including HDAC1. We further confirmed that HDAC1 interacted with the HIV-1 integrase in co-immunoprecipitation and pull-down experiments. HDAC1 knockdown in infected HeLa cells was shown to interfere with an early preintegration step of the HIV-1 replication cycle, which possibly involves reverse transcription. We also observed that, while HDAC1 overexpression inhibited HIV-1 expression after integration, HDAC1 knockdown had no effect on this step. In virus producer cells, HDAC1 knockdown had a limited impact on virus infectivity in either cell lines or primary CD4+ T cells. Conclusions Our results show that HDAC1 interacts with the HIV-1 integrase and affects virus replication before and after integration. Overall, HDAC1 appears to facilitate HIV-1 replication with a major effect on a preintegration step, which likely occurs at the reverse transcription step.


2020 ◽  
Author(s):  
Brian Nyiro ◽  
Sharon Bright Amanya ◽  
Rose Nabatanzi ◽  
Alice Bayiyana ◽  
Linda Igumba Kalazane ◽  
...  

Abstract Background Mechanisms for HIV control among HIV-1 elite and viremic-controllers are not fully understood. In Uganda, Studies have reported individuals who without Antiretroviral therapy have the inherent ability to control HIV progression to AIDS for a period of greater than 5 years. However, reasons for this phenotype are not understood. The study objective was to determine the distribution of CCR5 co-receptor on CD4+ T-cells and its associated promoter variants among HIV-1 elite and viremic-controllers. Methods We isolated CD4+T-cells from PBMCs using EasySep CD4+ T-cell negative selection kit, and stimulated them with anti-CD3 and anti-CD28 for 48 hours. To quantify CCR5 expression, we performed immune-phenotyping using flow cytometry. CCR5 promoter polymorphisms were determined through sanger sequencing. The Kruskal–Wallis and the Mann-Whitney test were used to compare differences in the percentages of CCR5+ CD4+ T-cells and the differences in CCR5 densities on CD4+ T-cells respectively. p values < 0.05 were considered significant. Results The percentage of CCR5+CD4+ T-cells was higher among the non-controllers compared to the controllers although, the difference was not statistically significant; elite and viremic-controllers (p=0.9173), viremic and non-controllers (0.0702), elite and non-controllers (0.6010). Of significance was the CCR5 densities on CD4+ T-cells, which were significantly higher among non-controllers relative to the controllers; elite and viremic-controllers (p=3048), viremic and non-controllers (P=0.0312), elite and non-controllers (P=0.0210) From the sequence analysis, the rs1799987A>G mutation was found among elite (71%) and viremic-controllers (61%), while the -2459A/A and rs41469351C>T mutation were among the non-controllers (57%). This study also identified two novel mutations 1070T>G and 785A>G among the elite controllers (14.3%). Conclusion Rs1799987 SNP highly detected among the elite and viremic controllers may be associated with reduced CCR5 densities on CD4+ T-cells while higher frequency of -2459 A/A and rs41469351 SNP among non-controllers may be associated with increased CCR5 densities on CD4+ T-cells. Thus Rs1799987 SNP may be responsible for the delayed HIV progression among elite and viremic controllers, while -2459A/A and rs41469351 SNP may be responsible for the rapid progression of HIV among non-controllers. In vitro studies are needed to study the effect of the two novel mutations 1070T>G and 785A>G among elite-controllers.


Sign in / Sign up

Export Citation Format

Share Document