scholarly journals Histone deacetylase 1 interacts with HIV-1 Integrase and modulates viral replication

2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Fadila Larguet ◽  
Clément Caté ◽  
Benoit Barbeau ◽  
Eric Rassart ◽  
Elsy Edouard

Abstract Background HIV-1 hijacks the cellular machinery for its own replication through protein-protein interactions between viral and host cell factors. One strategy against HIV-1 infection is thus to target these key protein complexes. As the integration of reverse transcribed viral cDNA into a host cell chromosome is an essential step in the HIV-1 life cycle, catalyzed by the viral integrase and other important host factors, we aimed at identifying new integrase binding partners through a novel approach. Methods A LTR-derived biotinylated DNA fragment complexed with the integrase on magnetic beads was incubated with extracts from integrase-expressing 293 T cells. Liquid chromatography-mass spectrometry/mass spectrometry and co-immunoprecipitation/pull-down experiments were used for the identification of binding partners. Transfections of histone deacetylase 1 (HDAC1) expression vectors and/or specific siRNA were conducted in HeLa-CD4 and 293 T cells followed by infection with fully infectious NL4–3 and luciferase-expressing pseudotyped viruses or by proviral DNA transfection. Fully infectious and pseudotyped viruses produced from HDAC1-silenced 293 T cells were tested for their infectivity toward HeLa-CD4 cells, T cell lines and primary CD4+ T cells. Late RT species and integrated viral DNA were quantified by qPCR and infectivity was measured by luciferase activity and p24 ELISA assay. Results were analyzed by the Student’s t-test. Results Using our integrase-LTR bait approach, we successfully identified new potential integrase-binding partners, including HDAC1. We further confirmed that HDAC1 interacted with the HIV-1 integrase in co-immunoprecipitation and pull-down experiments. HDAC1 knockdown in infected HeLa cells was shown to interfere with an early preintegration step of the HIV-1 replication cycle, which possibly involves reverse transcription. We also observed that, while HDAC1 overexpression inhibited HIV-1 expression after integration, HDAC1 knockdown had no effect on this step. In virus producer cells, HDAC1 knockdown had a limited impact on virus infectivity in either cell lines or primary CD4+ T cells. Conclusions Our results show that HDAC1 interacts with the HIV-1 integrase and affects virus replication before and after integration. Overall, HDAC1 appears to facilitate HIV-1 replication with a major effect on a preintegration step, which likely occurs at the reverse transcription step.

2019 ◽  
Author(s):  
Mateusz Stoszko ◽  
Abdullah M.S. Al-Hatmi ◽  
Anton Skriba ◽  
Michael Roling ◽  
Enrico Ne ◽  
...  

AbstractA leading pharmacological strategy towards HIV cure requires “shock” or activation of HIV gene expression in latently infected cells with Latency Reversal Agents (LRAs) followed by their subsequent clearance. In a screen for novel LRAs we used fungal secondary metabolites (extrolites) as a source of bio-active molecules. Using orthogonal mass spectrometry (MS) coupled to latency reversal bioassays, we identified gliotoxin (GTX) as a novel LRA. GTX significantly induced HIV-1 gene expression in latent ex vivo infected primary cells and in CD4+ T cells from all aviremic HIV-1+ participants. RNA sequencing identified 7SK RNA, the scaffold of the P-TEFb inhibitory 7SK snRNP complex to be significantly reduced upon GTX treatment of independent donor CD4+T cells. GTX disrupted 7SK snRNP, releasing active P-TEFb, which then phosphorylated RNA Pol II CTD, inducing HIV transcription. Our data highlight the power of combining a medium throughput bioassay, mycology and orthogonal mass spectrometry to identify novel potentially therapeutic compounds.


Cytokine ◽  
2009 ◽  
Vol 48 (1-2) ◽  
pp. 61
Author(s):  
Shay Matalon ◽  
Brent E. Palmer ◽  
Marcel F. Nold ◽  
Antonio Furlan ◽  
Gianluca Fossati ◽  
...  

2005 ◽  
Vol 25 (5) ◽  
pp. 1620-1633 ◽  
Author(s):  
P. Pavan Kumar ◽  
Prabhat Kumar Purbey ◽  
Dyavar S. Ravi ◽  
Debashis Mitra ◽  
Sanjeev Galande

ABSTRACT One hallmark of human immunodeficiency virus type 1 (HIV-1) infection is the dysregulation of cytokine gene expression in T cells. Transfection of T cells with human T-cell leukemia type 1 or 2 transactivator results in the induction of the T-cell-restricted cytokine interleukin-2 (IL-2) and its receptor (IL-2Rα). However, no T-cell-specific factor(s) has been directly linked with the regulation of IL-2 and IL-2Rα transcription by influencing the promoter activity. Thymocytes from SATB1 (special AT-rich sequence binding protein 1) knockout mice have been shown to ectopically express IL-2Rα, suggesting involvement of SATB1 in its negative regulation. Here we show that SATB1, a T-cell-specific global gene regulator, binds to the promoters of human IL-2 and IL-2Rα and recruits histone deacetylase 1 (HDAC1) in vivo. SATB1 also interacts with Tat in HIV-1-infected T cells. The functional interaction between HIV-1 Tat and SATB1 requires its PDZ-like domain, and the binding of the HDAC1 corepressor occurs through the same. Furthermore, Tat competitively displaces HDAC1 that is bound to SATB1, leading to increased acetylation of the promoters in vivo. Transduction with SATB1 interaction-deficient soluble Tat (Tat 40-72) and reporter assays using a transactivation-negative mutant (C22G) of Tat unequivocally demonstrated that the displacement of HDAC1 itself is sufficient for derepression of these promoters in vivo. These results suggest a novel mechanism by which HIV-1 Tat might overcome SATB1-mediated repression in T cells.


2014 ◽  
Vol 15 (6) ◽  
pp. 717-728 ◽  
Author(s):  
Jin Leng ◽  
Hsin-Pin Ho ◽  
Maria J. Buzon ◽  
Florencia Pereyra ◽  
Bruce D. Walker ◽  
...  

Retrovirology ◽  
2012 ◽  
Vol 9 (1) ◽  
Author(s):  
Benjamin Descours ◽  
Alexandra Cribier ◽  
Christine Chable-Bessia ◽  
Diana Ayinde ◽  
Gillian Rice ◽  
...  

2015 ◽  
Vol 90 (2) ◽  
pp. 904-916 ◽  
Author(s):  
Benjamin Trinité ◽  
Chi N. Chan ◽  
Caroline S. Lee ◽  
David N. Levy

ABSTRACTHIV-1 infection leads to the progressive depletion of the CD4 T cell compartment by various known and unknown mechanisms.In vivo, HIV-1 infects both activated and resting CD4 T cells, butin vitro, in the absence of any stimuli, resting CD4 T cells from peripheral blood are resistant to infection. This resistance is generally attributed to an intracellular environment that does not efficiently support processes such as reverse transcription (RT), resulting in abortive infection. Here, we show thatin vitroHIV-1 infection of resting CD4 T cells induces substantial cell death, leading to abortive infection.In vivo, however, various microenvironmental stimuli in lymphoid and mucosal tissues provide support for HIV-1 replication. For example, common gamma-chain cytokines (CGCC), such as interleukin-7 (IL-7), render resting CD4 T cells permissible to HIV-1 infection without inducing T cell activation. Here, we find that CGCC primarily allow productive infection by preventing HIV-1 triggering of apoptosis, as evidenced by early release of cytochromecand caspase 3/7 activation. Cell death is triggered both by products of reverse transcription and by virion-borne Vpr protein, and CGCC block both mechanisms. When HIV-1 RT efficiency was enhanced by SIVmac239 Vpx protein, cell death was still observed, indicating that the speed of reverse transcription and the efficiency of its completion contributed little to HIV-1-induced cell death in this system. These results show that a major restriction on HIV-1 infection in resting CD4 T cells resides in the capacity of these cells to survive the early steps of HIV-1 infection.IMPORTANCEA major consequence of HIV-1 infection is the destruction of CD4 T cells. Here, we show that delivery of virion-associated Vpr protein and the process of reverse transcription are each sufficient to trigger apoptosis of resting CD4 T cells isolated from peripheral blood. While these 2 mechanisms have been previously described in various cell types, we show for the first time their concerted effect in inducing resting CD4 T cell depletion. Importantly, we found that cytokines such as IL-7 and IL-4, which are particularly active in sites of HIV-1 replication, protect resting CD4 T cells from these cytopathic effects and, primarily through this protection, rather than through enhancement of specific replicative steps, they promote productive infection. This study provides important new insights for the understanding of the early steps of HIV-1 infection and T cell depletion.


2017 ◽  
Vol 61 (9) ◽  
Author(s):  
Chi N. Chan ◽  
Benjamin Trinité ◽  
David N. Levy

ABSTRACT HIV-1 infection of resting CD4 T cells plays a crucial and numerically dominant role during virus transmission at mucosal sites and during subsequent acute replication and T cell depletion. Resveratrol and pterostilbene are plant stilbenoids associated with several health-promoting benefits. Resveratrol has been shown to inhibit the replication of several viruses, including herpes simplex viruses 1 and 2, papillomaviruses, severe acute respiratory syndrome virus, and influenza virus. Alone, resveratrol does not inhibit HIV-1 infection of activated T cells, but it does synergize with nucleoside reverse transcriptase inhibitors in these cells to inhibit reverse transcription. Here, we demonstrate that resveratrol and pterostilbene completely block HIV-1 infection at a low micromolar dose in resting CD4 T cells, primarily at the reverse transcription step. The anti-HIV effect was fully reversed by exogenous deoxynucleosides and Vpx, an HIV-1 and simian immunodeficiency virus protein that increases deoxynucleoside triphosphate (dNTP) levels. These findings are consistent with the reported ability of resveratrol to inhibit ribonucleotide reductase and to lower dNTP levels in cells. This study supports the potential use of resveratrol, pterostilbene, or related compounds as adjuvants in anti-HIV preexposure prophylaxis (PrEP) formulations.


2013 ◽  
Vol 69 (1) ◽  
pp. 28-33 ◽  
Author(s):  
Liang Shan ◽  
Sifei Xing ◽  
Hung-Chih Yang ◽  
Hao Zhang ◽  
Joseph B. Margolick ◽  
...  

mBio ◽  
2018 ◽  
Vol 9 (2) ◽  
pp. e00316-18 ◽  
Author(s):  
Daniel J. Rawle ◽  
Dongsheng Li ◽  
Joakim E. Swedberg ◽  
Lu Wang ◽  
Dinesh C. Soares ◽  
...  

ABSTRACTOnce HIV-1 enters a cell, the viral core is uncoated by a poorly understood mechanism and the HIV-1 genomic RNA is reverse transcribed into DNA. Host cell factors are essential for these processes, although very few reverse transcription complex binding host cell factors have been convincingly shown to affect uncoating or reverse transcription. We previously reported that cellular eukaryotic translation elongation factor 1A (eEF1A) interacts tightly and directly with HIV-1 reverse transcriptase (RT) for more efficient reverse transcription. Here we report that the surface-exposed acidic residues in the HIV-1 RT thumb domain alpha-J helix and flanking regions are important for interaction with eEF1A. Mutation of surface-exposed acidic thumb domain residues D250, E297, E298, and E300 to arginine resulted in various levels of impairment of the interaction between RT and eEF1A. This indicates that this negatively charged region in the RT thumb domain is important for interaction with the positively charged eEF1A protein. The impairment of RT and eEF1A interaction by the RT mutations correlated with the efficiency of reverse transcription, uncoating, and infectivity. The best example of this is the strictly conserved E300 residue, where mutation significantly impaired the interaction of RT with eEF1A and virus replication in CD4+T cells without affectingin vitroRT catalytic activity, RT heterodimerization, or RNase H activity. This study demonstrated that the interaction between surface-exposed acidic residues of the RT thumb domain and eEF1A is important for HIV-1 uncoating, reverse transcription, and replication.IMPORTANCEHIV-1, like all viruses, requires host cell proteins for its replication. Understanding the mechanisms behind virus-host interactions can lay the foundation for future novel therapeutic developments. Our lab has identified eEF1A as a key HIV-1 RT binding host protein that is important for the reverse transcription of HIV-1 genomic RNA into DNA. Here we identify the first surface-exposed RT residues that underpin interactions with eEF1A. Mutation of one strictly conserved RT residue (E300R) delayed reverse transcription and viral core uncoating and strongly inhibited HIV-1 replication in CD4+T cells. This study advances the structural and mechanistic detail of the key RT-eEF1A interaction in HIV-1 infection and indicates its importance in uncoating for the first time. This provides a further basis for the development of an RT-eEF1A interaction-inhibiting anti-HIV-1 drug and suggests that the surface-exposed acidic patch of the RT thumb domain may be an attractive drug target.


Sign in / Sign up

Export Citation Format

Share Document