Hydrodistillation-headspace solvent microextraction, a new method for analysis of the essential oil components of Lavandula angustifolia Mill.

2005 ◽  
Vol 1098 (1-2) ◽  
pp. 14-18 ◽  
Author(s):  
Ali Reza Fakhari ◽  
Peyman Salehi ◽  
Rouhollah Heydari ◽  
Samad Nejad Ebrahimi ◽  
Paul R. Haddad
2020 ◽  
Vol 72 (2) ◽  
pp. 223-231
Author(s):  
Katerina Koiou ◽  
Ioannis Vasilakoglou ◽  
Kico Dhima

Essential oils are a plentiful source of plant compounds for potential use in the development of natural herbicides. With this in mind, the phytotoxicity of ten major essential oil components of lavender (Lavandula angustifolia Mill.) on the weed species bristly foxtail (Setaria verticillata (L.) P. Beauv.) was determined using a perlite-based Petri-dish bioassay. Their phytotoxicity was also compared with that of well-known phytotoxic essential oil components (carvacrol, thymol, carvone and eugenol) of oregano (Origanum vulgare L.) and clove (Syzygium aromaticum (L.) Merr. & L.M. Perry) essential oils. Potential synergistic or antagonistic effects between carvacrol or eugenol with other components of lavender essential oil were investigated. Regarding the most phytotoxic components, terpinen-4-ol at 80 nL/cm3 completely inhibited the germination and root length of bristly foxtail, displaying similar phytotoxicity to carvone and thymol. Like carvacrol, lavandulol and linalyl acetate caused total (100%) germination and root length reduction of bristly foxtail at 160 nL/cm3, while the same effect was achieved by lavandulyl acetate at 320 nL/cm3. A synergistic effect was also observed when carvacrol or eugenol were combined with ocimene, 3-octanone, ?-terpineol or terpinen-4-ol. Focusing on the development of alternative weed control strategies, lavender essential oils containing high concentrations of terpinen-4-ol, lavandulol or linalyl acetate could be useful for the production of natural herbicides. These essential oil components combined with selected oregano or clove essential oil components, increase phytotoxicity and weed control due to the synergistic effect observed when in mixture.


2014 ◽  
Vol 13 (33) ◽  
pp. 3413-3425 ◽  
Author(s):  
EL MIZ M. ◽  
SALHI, S. ◽  
EL BACHIRI A. ◽  
P. WATHELET J. ◽  
TAHANI A.

2012 ◽  
Vol 134 (4) ◽  
pp. 2419-2423 ◽  
Author(s):  
Jazia Sriti ◽  
Kamel Msaada ◽  
Thierry Talou ◽  
Mamadou Faye ◽  
Gerard Vilarem ◽  
...  

Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381 ◽  
Author(s):  
H Niksic ◽  
E Kovac-Besovic ◽  
M Sober ◽  
N Mulabegovic ◽  
M Kralj ◽  
...  

Author(s):  
Yedy Purwandi Sukmawan ◽  
Kusnandar Anggadiredja ◽  
I Ketut Adnyana

Background: Neuropathic pain is one of the contributors to the global burdens of illness. At present many patients do not achieve satisfactory pain relief even with synthetic pain-killers. Taking this into consideration, it is necessary to search for natural product-derived alternative treatment with confirmed safety and efficacy. Ageratum conyzoides L is a plant often used as analgesic in Indonesia, however, anti-neuropathic pain activity of this plant is still unknown. Objective: To determine the anti-neuropathic pain activity of the essential oil and non-essential oil component (distillation residue) of A. conyzoides L. Methods: We conducted separation of the essential oil component from other secondary metabolites through steam distillation. Both components were tested for anti-neuropathic pain activity using chronic constriction injury animal models with thermal hyperalgesia and allodynia tests. The animals were divided into 7 test groups namely normal, sham, negative, positive (pregabalin at 0.195 mg/20 g BW of mice), essential oil component (100 mg/kg BW), and non-essential oil component (100 mg/kg BW). Naloxone was tested against the most potent anti-neuropathic pain component (essential oil or nonessential oil) to investigate the involvement of opioid receptor. Results: The GC-MS of the essential oil component indicated the presence of 60 compounds. Meanwhile, non-essential oil components contained alkaloid, flavonoid, polyphenol, quinone, steroid, and triterpenoid. This non-essential oil component contained a total flavonoid equivalent to 248.89 ppm quercetin. The anti-neuropathic pain activity test showed significantly higher activity of the essential oil component compared to the non-essential oil component and negative groups (p<0.05). Furthermore, the essential oil component showed equal activity to pregabalin (p>0.05). However, this activity was abolished by naloxone, indicating the involvement of opioid receptor in the action of the essential oil component. Conclusion: The essential oil component of A. conyzoides L is a potential novel substance for use as anti-neuropathic pain.


2015 ◽  
Vol 5 (4) ◽  
pp. 268-272 ◽  
Author(s):  
Pramod Singh ◽  
Harish Andola ◽  
M.S.M. Rawat ◽  
Geeta Joshi nee Pant ◽  
J.S. Jangwan

LWT ◽  
2021 ◽  
pp. 111881
Author(s):  
Jessica Audrey Feijó Corrêa ◽  
João Vitor Garcia dos Santos ◽  
Alberto Gonçalves Evangelista ◽  
Anne Caroline Schoch Marques Pinto ◽  
Renata Ernlund Freitas de Macedo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document