Real-time Admission Control in a Queue-time Loop Production System

2021 ◽  
pp. 107617
Author(s):  
Rudi Nurdiansyah ◽  
I-Hsuan Hong ◽  
Pin-Kuan Lee
2021 ◽  
Author(s):  
Joseph Rizzo Cascio ◽  
Antonio Da Silva ◽  
Martino Ghetti ◽  
Martino Corti ◽  
Marco Montini

Abstract Objectives/Scope The benefits of real-time estimation of the cool down time of Subsea Production System (SPS) to prevent formation of hydrates are shown on a real oil and gas facility. The innovative tool developed is based on an integrated approach, which embeds a proxy model of SPS and hydrate curves, exploiting real-time field data from the Eni Digital Oil Field (eDOF, an OSIsoft PI based application developed and managed by Eni) to continuously estimate the cool down time before hydrates are formed during the shutdown. Methods, Procedures, Process The Asset value optimization and the Asset integrity of hydrocarbon production systems are complex and multi-disciplinary tasks in the oil and gas industry, due to the high number of variables and their synergy. An accurate physical model of SPS is built and, then, used to develop a proxy model, which integrates hydrate curves at different MeOH concentration, being able to estimate in real time the cool down time of SPS during the shutdown exploiting data from subsea transmitters made available by eDOF in order to prevent formation of hydrates. The tool is also integrated with a user-friendly interface, making all relevant information readily available to the operators on field. Results, Observations, Conclusions The integrated approach provides a continues estimation of cool down time based on real time field data (eDOF) in order to prevent formation of hydrates and activate preservation actions. An accurate physical model of SPS is built on a real business case using Olga software and cool down curves simulated considering different operating shutdown scenarios. Hydrate curves of the considered production fluid are also simulated at different MeOH concentration using PVTsim NOVA software. Off-line simulated curves are then implemented as numerical tables combined with eDOF data by an Eni developed fast executing proxy model to produce estimated cool down time before hydrates are formed. A graphic representation of SPS behavior and its cool down time estimation during shutdown are displayed and ready to use by the operators on field in support of the operations, saving cost and time. Novel/Additive Information The benefits of real time estimation of the cool down time of SPS to prevent hydrates formation are shown in terms of saving of time and cost during the shutdown operations on a real case application. This integrated approach allows to rely on a continue, automatic and acceptably accurate estimate of the available time before hydrates are formed in SPS, including the possibility to be further developed for cases where subsea transmitters are not available or extended to other flow assurance issues.


Author(s):  
Maniru Malami Umar ◽  
Amimu Mohammed ◽  
Abubakar Roko ◽  
Ahmed Yusuf Tambuwal ◽  
Abdulhakeem Abdulazeez

Call admission control (CAC) is one of the radio resource management techniques that regulates and provide resources for new or ongoing calls in the network. The existing CAC schemes wastes bandwidth due to its failure to check before degrading admitted real-time calls and it also increases the call dropping probability (CBP) and calling blocking probability (CBP) of real-time calls due to the delay incurred when bandwidth is degraded from them. This paper proposed an enhanced adaptive call admission control (EA-CAC) scheme with bandwidth reservation. The scheme employs a prior-check mechanism that ensured bandwidth to be degraded will be enough to admit the new call request. It further incorporates an adaptive degradation mechanism that degrades non-real time calls before degrading the RT calls. The performance of the EA-CAC scheme was evaluated against two existing schemes using Vienna LTE system level simulator. The EA-CAC scheme exhibits better performance compared to the two schemes in terms of throughput, CBP, and CDP of RT calls without sacrificing the performance of NRT calls.


Sign in / Sign up

Export Citation Format

Share Document