wood plastic composite
Recently Published Documents


TOTAL DOCUMENTS

301
(FIVE YEARS 80)

H-INDEX

20
(FIVE YEARS 3)

2021 ◽  
Vol 12 (1) ◽  
pp. 208
Author(s):  
Dengcheng Feng ◽  
Michael Turner ◽  
Philip D. Evans

The properties of wood plastic composites (WPCs) depend on their microstructure, particularly the level and geometry of wood reinforcement in the composite. We hypothesize that impregnating a WPC with a radiocontrast agent will increase the contrast between wood and plastic, allowing better visualization of its microstructure and numerical analysis of the geometry of its wood reinforcement. A commercial WPC was scanned using X-ray micro-CT, impregnated with aqueous sodium iodide, and then rescanned. CT data from both scans were visualized, and we analyzed the geometry of wood reinforcement and levels of wood, plastic, zinc borate (ZB), and voids in the WPC. ZB occurred mainly as discrete particles between wood flakes, and interfacial voids formed a network of cracks within the WPC. Sodium iodide labeling made it possible to clearly visualize wood and plastic in the WPC and quantify levels of different phases and the geometry of wood particles. However, sodium iodide was not an ideal contrast agent because it swelled wood particles, closed interfacial voids, and partially dissolved ZB particles. We suggest methods of overcoming these limitations and conclude that advances in labeling are necessary to improve our understanding of the relationship between the microstructure of WPCs and their properties.


2021 ◽  
Author(s):  
Zahra Ranjbarha ◽  
Javad Mokhtari Aliabad ◽  
Parviz Aberoomand-Azar ◽  
Seyed Amin Mirmohammadi ◽  
Mohammad Saber-Tehrani

Abstract In this study, the ability to remove methylene blue cation pigment using wood-plastic composite containing high density polyethylene and wood powder as a recycled material was studied. The effect of some important parameters such as pH, adsorbent amount and contact time were investigated. Adsorption efficiencies for methylene blue was maximized at alkaline pH. Adsorption capacity increased with increasing adsorbent amount and contact time. The value of R2 in Langmuir model was equal to 1 and the separation factor for 0.5 and 1 g of adsorbent were 0.09 and 0.1, respectively. Given that the methylene blue adsorption data were more consistent with the Langmuir isotherm model, it can be stated that the wood-plastic composite probably has uniform adsorption surfaces and the adsorption process occurred in homogeneous system on the adsorbent surface. Based on the results of this study, it was observed that this composite is a suitable adsorbent for removing methylene blue from aqueous solutions and used as a purifying agent in the decolorization of effluents containing pigments. This adsorbent is recyclable and is cost-effective to remove dye from textile industry wastewater.


Wood Research ◽  
2021 ◽  
Vol 66 (4) ◽  
pp. 606-620
Author(s):  
PUTRA PANGESTU KIDUNG TIRTAYASA ◽  
WAYAN DARMAWAN ◽  
DODI NANDIKA ◽  
IMAM WAHYUDI ◽  
LUMONGGA DUMASARI ◽  
...  

The purpose of this research was to analyze the performance (wear resistance, surface roughness, chip formation, and noise level) of AlCrN, TiN, and TiAlN coated tungsten carbides in cutting composite boards. The composite boards of wood plastic composite, laminated veneer lumber, andorientedstrand board were cut by the coated tungsten carbide tools in a computer numerical control router. The results show that the differences in structure among the composite boards resulted in the difference in clearance wear, chip formation, surface roughness, and noise level phenomenon. The abrasive materials in wood plastic composite generated the highest clearance wear on the coated carbide tools tested. TiAlN coated carbide tool provided better wear resistance, smoother composite boards surfaces, and lower noise levels.


Sign in / Sign up

Export Citation Format

Share Document