scholarly journals Surface Roughness and Necessity of Manual Refinishing Requirements of CAD/CAM-Manufactured Titanium and Cobalt-Chrome Bars – A Pilot Study

2019 ◽  
Vol 13 (1) ◽  
pp. 316-326 ◽  
Author(s):  
Peter Gehrke ◽  
Jochen Dinkel ◽  
Carsten Fischer ◽  
Kai Schmenger ◽  
Robert Sader

Background: Due to their increased precision, CAD/CAM generated bars (Computer-Aided Design/ Computer-Aided Manufacturing) are increasingly utilized in implant prosthodontics. For optimal clinical results, surface morphology should promote the integration of soft tissue while minimizing plaque and bacterial retention. Objective: Despite their clinical use, only limited information on the biological and clinical surface quality of CAD/CAM milled bars is available. The aim of the study was therefore to characterize the surface topography of bars of different manufacturers based on the profilometric analysis and the need for manual post-processing in the laboratory. Methods: A custom mandibular edentulous cast with four anterior implants was used as a reference cast and reproduced eight times. On each reproduction cast, corresponding scan flags were positioned and digitized. Acrylic 3D printed bar frameworks were produced and sent to the respective production center along with the digital files of the CAD bars for milling. In the course of profilometric analysis, all bars were examined in three critical Regions of Interest (ROI): Transmucosal, labial, basal. Sa and Ra values of each construction were determined. To evaluate the necessary refinishing time eight dental technicians macroscopically evaluated the bars by performing a subjective visual inspection. Kruskal-Wallis H-tests and Tukey and Kramer's post hoc tests were applied to detect differences between the samples. Results: After profilometric examination, three specimens (Dentsply Sirona: ZDC; Straumann: ZST; CAMLOG: ZCC) demonstrated surface roughness values in the biological acceptable range (Sa 0.2-0.4 μm) in the transmucosal region and provided optimal conditions for a reliable soft tissue adaptation. The Ra measurements revealed values beyond the acceptable threshold in the transmucosal region for three bars (Straumann: ZST; Dentsply Sirona: ZDC; Amann Girrbach: LAC). Four bars (LAC: Amann Girrbach; ZBC: BEGO; Datron: LDC & LDT; Zirkonzahn: ZZC) needed undesirable extensive manual rework. The evaluation of quality and time for manual post-processing by dental technicians confirmed the measurement-based ranking of the bars. Conclusion: It is desirable to define a clear roughness threshold for the clinical acceptance of transmucosal CAD/CAM generated surfaces. Clinical studies with profilometric data could help to further improve the surface quality of CAD/CAM milled bars and reduce the need for manual reworking time and effort.

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1401
Author(s):  
Doo-Bin Song ◽  
Man-So Han ◽  
Si-Chul Kim ◽  
Junyong Ahn ◽  
Yong-Woon Im ◽  
...  

This study investigated the fitting accuracy of titanium alloy fixed dental prostheses (FDP) after sequential CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) fabrication. A three-unit FDP model connecting mandibular second premolars and molars was prepared and scanned to fabricate titanium FDPs by CAD/CAM milling. A total of six FDPs were sequentially milled in one titanium alloy disk using a new set of burs every time (n = 4). The fitting accuracy of FDPs was mesiodistally evaluated by a silicone replica technique and the measurement was triplicated at four different locations: MO (marginal opening), MG (marginal gap), AG (axial gap), and OG (occlusal gap). Data were statistically analyzed using ANOVA and Tukey’s HSD test. The fitting accuracy of PMMA (polymethyl methacrylate) FDPs milled using the worn or new bur were evaluated by the same procedure (n = 6). The mean dimensions of titanium FDP for all measuring positions, except for AG, were significantly increased from the third milling. However, no difference was noted between the first FDP and the second FDP milled with the same set of burs. Severe edge chippings were observed in all milling burs. Detrimental effects of the worn burs on the fitting accuracy were demonstrated in the CAD/CAM-milled PMMA FDP. The results recommend proper changing frequency of cutting burs to achieve the quality of fit and predictable outcomes for dental CAD/CAM prostheses.


2022 ◽  
Author(s):  
eaeldwakhly not provided

This study was conducted to assess the surface characteristics in terms of roughness of two CAD/CAM (Computer-Aided-Design/Computer-Aided Manufacturing)restorative material spre and post chewing simulation exposure. Methods: Specimens were prepared from two CAD/CAM ceramic materials: Cerec Blocs C and IPS e-max ZirCAD. A total of 10 disks were prepared for each study group. 3D optical noncontact surface profiler was used to test the surface roughness (ContourGT, Bruker, Campbell, CA, USA). A silicone mold was used to fix the individual samples using a self-curing resin. Surface roughness (SR) was examined pre and post exposure to chewing simulation. 480,000 simulated chewing cycles were conducted to mimic roughly two years of intraoral clinical service. The results data was first tested for normality and equal variance (Levene’s test >0.05) then examined with paired and independent sample t-test at a significance level of (p < 0.05). Results:The two CAD-CAM materials tested exhibited increased surface roughness from baseline. The highest mean surface roughness was observed in Cerec blocs C group after chewing simulation (2.34 µm± 0.62 µm). Whereas the lowest surface roughness was observed in IPS e.max ZirCAD group before chewing simulation (0.42 µm± 0.16 µm). Both study groups exhibited significantly different surface roughness values (p< 0.05). There was a statistically higher surface roughness values after the chewing simulation in Cerec blocs C when compared to IPS e.max ZirCAD groups (p = 0.000).Conclusion:Even though both tested CAD/CAM materials differ in recorded surface roughness values, results were within clinically accepted values.


2021 ◽  
Author(s):  
CA Jurado ◽  
A Tsujimoto ◽  
H Watanabe ◽  
NG Fischer ◽  
JA Hasslen ◽  
...  

SUMMARY Objective: The purpose of this study was to evaluate the effectiveness of five different polishing systems on a computer-aided design and computer-aided manufacturing (CAD/CAM) polymer-infiltrated ceramic-network restoration with nanoscale assessment using atomic force microscopy (AFM) and visual assessment performed by dental school senior students and faculty members. Method: Forty-eight full coverage crowns were milled out of polymer-infiltrated ceramic-network CAD/CAM blocks (Vita Enamic) for polishing with one company proprietary, two ceramic and two composite polishing systems. The prepared crowns were divided into six groups: (1) no polishing (control); (2) polishing with Vita Enamic Polishing Kit (VEna); (3) polishing with Shofu Porcelain Laminate Polishing Kit (SCer); (4) polishing with Brasseler Dialite Feather lite All- Ceramic Adjusting & Polishing System (BCer); (5) polishing with Shofu Composite Polishing Kit (SCom); and (6) polishing with Brasseler Composite Polishing Kit (BCom). The polished crown surface topography was observed, and surface roughness and area were measured with AFM. In addition, polished crowns were visually assessed by 15 senior dental students and 15 dental school faculty members. Results: All polishing treatments significantly reduced the surface roughness and area of the crown compared with the control. SCom and BCom showed significantly higher surface area than VEna, and the SCer and BCer groups were intermediate, showing no significant difference from either VEna or SCom and BCom. There were no significant differences in surface roughness between any of the systems. Dental students and faculty members classified the groups polished with VEna, SCer, and BCer groups as clinically acceptable, and they selected BCer group as the best polished restorations and the control group as the least polished restorations. Conclusions: Ceramic and composite polishing systems produced similar polishing results as that observed using a company proprietary polishing system. However, effectiveness for polishing using a company proprietary and ceramic polishing system tends to be higher than composite polishing systems.


Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2252 ◽  
Author(s):  
Yin ◽  
Jang ◽  
Lee ◽  
Bae

This study compares the mechanical properties and wear ability of five CAD/CAM (computer-aided design/computer-aided manufacturing) millable dental blocks. All the discs, including Amber Mill Hybrid, Vita Enamic, Katana Avencia, Lava Ultimate, and Amber Mill, were cut in dimensions of 1.2 mm in thickness and 12 mm in diameter, polished to a machined surface, and immersed in distilled water for seven days. Vickers hardness was measured and the indentations were observed using microscope. The discs were brushed under a 150 g load. Mean surface roughness (Ra) and topography were determined after 100,000 cycles. Finally the biaxial flexure strength of the discs was measured and the broken surfaces were observed using scanning electron microscopy (SEM). The data was subjected to Weibull analysis. All data were analyzed by one-way analysis (ANOVA). The results of Vickers hardness are shown as: Amber Mill > Vita Enamic > Amber Mill Hybrid > Lava Ultimate > Katana Avencia. Katana Avencia showed the highest volume percentage reduction and the roughest surface after toothbrushing. The biaxial flexural strength is shown as: Amber Mill > Katana Avencia > Lava Ultimate > Amber Mill Hybrid > Vita Enamic. All the tested materials exhibited varying degrees of mass loss and surface roughness. The properties of the composite materials are related to the filler content, filler volume, and polymerization methods.


2018 ◽  
Vol 43 (4) ◽  
pp. 437-446 ◽  
Author(s):  
NG Fischer ◽  
A Tsujimoto ◽  
AG Baruth

SUMMARY Objective: Limited information is available on how to polish and finish zirconia surfaces following computer-aided design/computer-aided manufacturing (CAD/CAM), specifically, how differing application forces and reuse of zirconia polishing systems affect zirconia topography. Purpose: To determine the effect of differing, clinically relevant, polishing application forces and multiple usages of polishing burs on the surface topography of CAD/CAM zirconia. Methods: One hundred twenty 220-grit carbide finished zirconia disks were sintered according to manufacturer's directions and divided into two groups for the study of two coarse polishing bur types. Each group was divided into subgroups for polishing (15,000 rpm) at 15 seconds for 1.0 N, 4.5 N, or 11 N of force using a purpose-built fixture. Subgroups were further divided to study the effects of polishing for the first, fifth, 15th, and 30th bur use, simulating clinical procedures. Unpolished surfaces served as a control group. Surfaces were imaged with noncontact optical profilometry (OP) and atomic force microscopy (AFM) to measure average roughness values (Ra). Polishing burs were optically examined for wear. Scanning electron microscopy (SEM) was performed on burs and zirconia surfaces. One-way ANOVA with post hoc Tukey HSD (honest significant difference) tests (α=0.05) were used for statistical analyses. Results: AFM and OP Ra values of all polished surfaces were significantly lower than those of the unpolished control. Different polishing forces and bur reuse showed no significant differences in AFM Ra. However, significant differences in OP Ra were found due to differing application forces and bur reuse between the first and subsequent uses. SEM and optical micrographs revealed notable bur wear, increasing with increasing reuse. SEM and AFM micrographs clearly showed polished, periodic zirconia surfaces. Nanoscale topography, as analyzed with kurtosis and average groove depth, was found dependent on the specific polishing bur type. Conclusions: These in vitro results suggest changes in OP Ra due to bur reuse and polishing application force. Within the parameters of this study, the resultant topography of zirconia polishing is force-dependent and the reuse of coarse polishing burs is possible without statistically significant differences in Ra values after initial use. Nanoscale and microscale topography were shown to depend on specific polishing bur type.


2015 ◽  
Vol 41 (4) ◽  
pp. 450-458 ◽  
Author(s):  
Alessandro Pozzi ◽  
Marco Tallarico ◽  
Alberto Barlattani

This study was carried on to assess the clinical performance of a novel restorative concept consisting in single monolithic lithium disilicate full-contour crowns bonded on computer-aided design/computer-aided manufacturing (CAD/CAM) zirconia complete-arch implant bridges, to overcome the drawbacks related to the chipping of porcelain fused to zirconia restorations. Sixteen patients received 18 implant-supported hybrid screw-cement-retained complete-arch restorations, consisting of single monolithic lithium disilicate full-contour crowns bonded on CAD/CAM zirconia frameworks. The restorations were supported by 4–8 implants. All patients were followed up for at least 3 years on function (range 36 to 60 months, mean 49.3 months). Clinical controls were scheduled every 4 months. The outcomes were implant and prosthetic survival and success rates, any complications, patient satisfaction, and soft tissue parameters. No dropouts occurred. The overall implant and prosthesis survival rates were 100%. One of 18 restorations (1 of 236 dental units) showed a chip-off fracture of the veneering ceramic that was polished intraorally without any additional treatment, scoring a cumulative prosthetic success rate of 100%, according to the California Dental Association index. All patients were functionally and esthetically highly satisfied with their restorations. Successful soft tissue parameters were found around all implants. Single monolithic lithium disilicate full-contour crowns, bonded on CAD/CAM screw-retained complete-arch zirconia frameworks, showed favorable preliminary outcomes with medium-term follow-up. However, randomized controlled studies of this technique are required for further conclusive recommendations.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6207
Author(s):  
Na-Eun Nam ◽  
Seung-Ho Shin ◽  
Jung-Hwa Lim ◽  
June-Sung Shim ◽  
Jong-Eun Kim

This study analyzed the surface roughness and waviness, Vickers hardness (VHN), and color changes of six types of 3D printed resins and computer-aided design/computer-aided manufacturing (CAD/CAM) materials after artificial toothbrushing. The average surface roughness height (Ra) change of Formlabs denture teeth A2 resin (FMLB) was not significant between after artificial toothbrushing (0.17 ± 0.02 μm and 0.17 ± 0.05 μm, respectively; mean ± standard deviation). However, the Ra value increased significantly in all remaining groups. Regarding waviness, polymethylmethacrylate (PMMA) had the largest increases in average waviness height (Wa) and maximum surface waviness height (Wz) between, before (0.43 ± 0.23 μm and 0.08 ± 0.02 μm), and after (8.67 ± 4.03 μm, 1.30 ± 0.58 μm) toothbrushing. There were no significant changes in Wa for Formlabs denture teeth A2 resin (FMLB) and NextDent C&B (NXT). After artificial toothbrushing, the dispersed-filler composite (DFC) group had the largest color difference (ΔE, of 2.4 ± 0.9), and the remaining materials had smaller changes than the clinical acceptance threshold of ΔE = 2.25. The VHN of FMLB and NXT were 9.1 ± 0.4 and 15.5 ± 0.4, respectively, and were not affected by artificial toothbrushing. The flexural strengths of the 3D printed materials were 139.4 ± 40.5 MPa and 163.9 ± 14.0 MPa for FMLB and NXT, respectively, which were similar to those of the polycarbonate and PMMA groups (155.2 ± 23.6 MPa and 108.0 ± 8.1 MPa, respectively). This study found that the evaluated 3D printed materials had mechanical and optical properties comparable to those of CAD/CAM materials and were stable even after artificial toothbrushing and hydrothermal aging.


2019 ◽  
Vol 44 (1) ◽  
pp. 88-95 ◽  
Author(s):  
G Daryakenari ◽  
H Alaghehmand ◽  
A Bijani

SUMMARY Objective: Computer aided design-computer aided machining (CAD-CAM) ceramic crowns are replacing ceramo-metal ones due to newly developed mechanical properties and esthetics. To obtain knowledge about their interactions due to polishing and occlusal contacts with the opposing dental enamel specimen, including surface roughness and wear, the three-body wear simulation was investigated. Methods and Materials: The surface roughness (RA) and wear rate (mm) of four CAD-CAM blocks with different compositions including Vita Mark II, e.max, Suprinity, and Enamic, after two surface treatments of glazing and polishing, and their opposing enamel specimens, were investigated using a mastication simulator and atomic force microscope. Results: The roughness of all ceramic and to a greater extent enamel samples, with the exception of enamel opposing polished Enamic samples, was decreased after wear. No significant difference in wear was evident for the ceramic samples between the glazed and polished treatments. Lower wear rates were recorded only for polished Vita Mark II and polished Enamic in comparison to the glazed ones. Conclusion: The newly developed polishing systems for CAD-CAM ceramics can be good alternatives to reglazing, because the roughness and wear rate of both the ceramic and the opposing enamel will either not change or decrease.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 981 ◽  
Author(s):  
Konstantinos Papadopoulos ◽  
Kimon Pahinis ◽  
Kyriaki Saltidou ◽  
Dimitrios Dionysopoulos ◽  
Effrosyni Tsitrou

Computer-aided design/computer-aided manufacturing (CAD/CAM) technology was developed to ensure the sufficient strength of tooth restorations, to improve esthetic restorations with a natural appearance and to make the techniques easier, faster and more accurate. In the view of the limited research on the surface treatments of the CAD/CAM materials and the need to evaluate the ideal surface characteristics of a material to achieve the best adhesion to tooth tissues, this study aimed to investigate the surface roughness and morphology of four different CAD/CAM materials using four different surface treatments. The CAD/CAM materials used in this study were three composites (Shofu Block HC, Lava Ultimate and Brilliant Crios) and a hybrid ceramic (Enamic). The surface of the specimens of each material received one of the following treatments: no surface treatment, sandblasting with 29 μm Al2O3 particles, 9% hydrofluoric acid etching and silane application, and the tribochemical method using CoJet System. Surface roughness was evaluated using optical profilometry, and surface morphology was observed by means of scanning electron microscopy. All surface treatments resulted in higher surface roughness values compared to the control group. Different treatments affected the surface properties of the materials, presumably due to discrepancies in their composition and structure.


2019 ◽  
Vol 45 (4) ◽  
pp. 407-415 ◽  
Author(s):  
P Nassary Zadeh ◽  
N Lümkemann ◽  
M Eichberger ◽  
B Stawarczyk ◽  
M Kollmuss

Clinical Relevance As temporary materials are often used in prosthetic dentistry, there is need to investigate their behavior in the oral environment. Parameters such as surface roughness and surface free energy correlate to the level of plaque adhesion, which can impact gingival health. SUMMARY Objective: To test computer-aided design/computer-aided manufacturing (CAD/CAM)-fabricated and conventionally processed polymer-based temporary materials in terms of radiopacity (RO), surface free energy (SFE), surface roughness (SR), and plaque accumulation (PA). Methods and Materials: Six temporary materials (n=10/n=10) were tested, including three CAD/CAM-fabricated (CC) materials—Art Bloc Temp (CC-ABT), Telio CAD (CC-TC), and VITA CAD Temp (CC-VCT)—and three conventionally processed (cp) materials: Integrity Multi Cure (cp-IMC), Luxatemp Automix Plus (cp-LAP), and Protemp 4 (cp-PT4). Zirconia acted as the control group (CG, n=10). RO was evaluated according to DIN EN ISO 13116. SFE was investigated using contact angle measurements. SR was measured using a profilometer. The PA tests were performed using three microorganisms: Streptococcus mutans, Actinomyces naeslundii, and Veillonella parvula. Data were analyzed using Kolmogorov-Smirnov, Kruskal-Wallis, Mann-Whitney U-, Dunn-Bonferroni, Wilcoxon, Levene, and Pearson tests and one-way analysis of variance with post hoc Scheffé test (α=0.05). Results: No radiopacity was observed for any CC material or cp-PT4. CG showed the highest RO, while no differences between cp-IMC and cp-LAP were found. CG showed lower SFE compared to all polymer temporary materials, except in the case of CC-TC. cp-LAP and cp-IMC presented higher SFE than did CC-TC and CG. CC-ABT presented lower initial SR values compared to cp-PT4 and cp-LAP. For cp-LAP, a higher initial SR was measured than for all CAD/CAM materials and cp-IMC. All specimens showed a certain amount of PA after the incubation period. A naeslundii and V parvula resulted in comparable PA values, whereas the values for S mutans were lower by one log level. CAD/CAM materials showed superior results for SR, SFE, and PA, whereas all materials lacked RO.


Sign in / Sign up

Export Citation Format

Share Document