Research on Surface Quality Enhancement of Wood-Plastic Composite Powder SLS Parts by Post Processing

2010 ◽  
Vol 113-116 ◽  
pp. 508-511 ◽  
Author(s):  
Wei Liang Zeng ◽  
Yan Ling Guo

According to its advantages, such as low-cost and green biological etc., Wood-Plastic Composite(WPC) is more suitable for make parts by Selective Laser Sintering(SLS) rapid prototyping (RP) process. With optimal design of components, the parts made by WPC have good mechanical properties as well as with good laser sintering properties. In order to further improve the surface quality of the parts, the post-processing–infiltrating with wax–is introduced. After post-processing, the void fraction is decreased from 51% to 7%, surface quality has been greatly improved, Ra belows 13µm on average, after polishing the surface is more smooth and Ra belows 5µm averagely,compared to those without post processing, surface roughness decrease 22% and 73% respectively.

2010 ◽  
Vol 113-116 ◽  
pp. 1845-1848 ◽  
Author(s):  
Wei Liang Zeng ◽  
Yan Ling Guo ◽  
Zong Sheng Xin ◽  
Kai Yi Jiang

In this paper, Wood-Plastic Composite(WPC) is successfully developed to make parts by Selective Laser Sintering(SLS) rapid prototyping (RP) process according to its advantages, such as green biological, wood texture and recycled, but the most important advantage is low-cost. With optimal design of components, the parts made by WPC have good mechanical properties as well as with good laser sintering properties. In order to further improve the mechanical properties of the parts, the post-processing–infiltrating with wax–is introduced. Through post-processing, the void fraction is decreased from from 51% to 7%, the mechanical properties are significantly improved, the average tensile strength, bending strength, impact strength are 1.214 MPa, 2.73 MPa and 1.4125 kJ/m2, compared with those without post processing, the tensile strength is 87 times, the bending strength is 4.7 times and impact strength is 2.5 times, respectively.


2010 ◽  
Vol 26-28 ◽  
pp. 616-619 ◽  
Author(s):  
Wei Liang Zeng ◽  
Yan Ling Guo ◽  
Kai Yi Jiang

In this paper, powder spreading property in Wood-Plastic Composite(WPC) Selective Laser Sintering(SLS) rapid prototyping(RP) process is studied. WPC is more suitable for make parts by SLS according to its advantages, such as low-cost and green biological etc.. But as wood power is mainly composed of wood fiber and wood fibers have irregular shapes, easy to aggregate and block power spreading process, spreading powder uniformly on bed by leveling roller is difficult, resulting in bad shape quality of parts. In order to further improve powder spreading property of RP process, with optimal design of components, viscosity reducer calcium is added into WPC. Finally, as result of better powder spreading property, shape quality of the parts made by WPC is improved greatly and have good as well as with good laser sintering properties.


2019 ◽  
Author(s):  
Sami Matthews ◽  
Amir Toghyani ◽  
Panu Tanninen ◽  
Marko Hyvärinen ◽  
Ville Leminen ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3034
Author(s):  
Aboubaker I. B. Idriss ◽  
Jian Li ◽  
Yangwei Wang ◽  
Yanling Guo ◽  
Elkhawad A. Elfaki ◽  
...  

The range of selective laser sintering (SLS) materials is currently limited, and the available materials are often of high cost. Moreover, the mechanical strength of wood–plastic SLS parts is low, which restricts the application of a SLS technology. A new composite material has been proposed to address these issues, while simultaneously valorizing agricultural and forestry waste. This composite presents several advantages, including reduced pollution associated with waste disposal and reduced CO2 emission with the SLS process in addition to good mechanical strength. In this article, a novel and low-cost Prosopis chilensis/polyethersulfone composite (PCPC) was used as a primary material for SLS. The formability of PCPC with various raw material ratios was investigated via single-layer experiments, while the mechanical properties and dimensional accuracy of the parts produced using the various PCPC ratios were evaluated. Further, the microstructure and particle distribution in the PCPC pieces were examined using scanning electron microscopy. The result showed that the SLS part produced via 10/90 (wt/wt) PCPC exhibited the best mechanical strength and forming quality compared to other ratios and pure polyethersulfone (PES), where bending and tensile strengths of 10.78 and 4.94 MPa were measured. To improve the mechanical strength, post-processing infiltration was used and the PCPC-waxed parts were enhanced to 12.38 MPa and 5.73 MPa for bending and tensile strength.


2020 ◽  
Vol 10 (15) ◽  
pp. 5122
Author(s):  
Cagatay Tasdemir ◽  
Ibrahim Halil Basboga ◽  
Salim Hiziroglu

The objective of this study was to evaluate the surface quality of experimentally manufactured wood plastic composite (WPC) samples exposed to water soaking. Eastern redcedar (Juniperus virginiana L.), which is one of the invasive species in Oklahoma, USA, and recycled plastic were used to manufacture WPC samples. Three types of samples, namely with 0%, 3% and 6% nano-clay were soaked in water for up to one month. Stylus-type equipment was employed to evaluate their surface roughness as a function of water exposure. Two accepted roughness parameters, average roughness (Ra) and mean peak-to-valley (Rz), were used to determine changes in the surface quality of the specimens due to water exposure. Average roughness values of 1.5 µm and 4.1 µm were determined for the samples with no clay in dry conditions and those soaked for one month in water, respectively. Corresponding values were lower in the case of those with clay in their content. Based on the findings in this work, it appears that the stylus technique can be successfully applied to such samples to quantitatively evaluate their surface quality when they are exposed to water for an extended time span. It is expected that data from this work could help to produce a better understanding of the behavior of WPCs under environmental conditions.


BioResources ◽  
2015 ◽  
Vol 10 (4) ◽  
Author(s):  
Sami Matthews ◽  
Amir Esmael Toghyani ◽  
Harri Eskelinen ◽  
Timo Kärki ◽  
Juha Varis

Sign in / Sign up

Export Citation Format

Share Document