scholarly journals Cytological and molecular characteristics of delayed spike development in wheat under low temperature in early spring

2021 ◽  
Author(s):  
Xurun Yu ◽  
Yufei Jiang ◽  
Huihui Yao ◽  
Liping Ran ◽  
Yong Zang ◽  
...  
2009 ◽  
Vol 19 (2) ◽  
pp. 115-123 ◽  
Author(s):  
Filip Vandelook ◽  
Nele Bolle ◽  
Jozef A. Van Assche

AbstractA low-temperature requirement for dormancy break has been observed frequently in temperate-climate Apiaceae species, resulting in spring emergence of seedlings. A series of experiments was performed to identify dormancy-breaking requirements of Aegopodium podagraria, a nitrophilous perennial growing mainly in mildly shaded places. In natural conditions, the embryos in seeds of A. podagraria grow in early winter. Seedlings were first observed in early spring and seedling emergence peaked in March and April. Experiments using temperature-controlled incubators revealed that embryos in seeds of A. podagraria grow only at low temperatures (5°C), irrespective of a pretreatment at higher temperatures. Seeds did not germinate immediately after embryo growth was completed, instead an additional cold stratification period was required to break dormancy completely. Once dormancy was broken, seeds germinated at a range of temperatures. Addition of gibberellic acid (GA3) had a positive effect on embryo growth in seeds incubated at 10°C and at 23°C, but it did not promote germination. Since seeds of A. podagraria have a low-temperature requirement for embryo growth and require an additional chilling period after completion of embryo growth, they exhibit characteristics of deep complex morphophysiological dormancy.


2020 ◽  
Vol 20 (3) ◽  
Author(s):  
Fernanda Colombari ◽  
Lorenzo Tonina ◽  
Andrea Battisti ◽  
Nicola Mori

Abstract Survival and parasitism activity of Trichopria drosophilae Perkins adults, a cosmopolitan parasitoid of Drosophila spp., were studied under laboratory conditions using five constant temperatures at the lower range known for this enemy, from 4 to 20°C in 4°C increments. Drosophila suzukii Matsumura, an invasive pest of small fruits, was used as a host. Commercially available adult parasitoids were provided with 1) food and D. suzukii pupae; 2) food and no D. suzukii pupae; 3) no food and no pupae. The results show that adult females of T. drosophilae lived longer than males, and both generally benefitted from food supply. The highest level of survival was observed between 8 and 12°C for fed insects, irrespective of whether they were offered host pupae or not. The absence of food led to the highest mortality, but the parasitoid demonstrated considerably resistance to prolonged starvation. Successful parasitism increased steadily with temperature and reached the highest value at 20°C. Conversely, D. suzukii emergence rate was high after exposure of pupae to parasitoids at 4°C, while pupal mortality increased strongly with temperature until 12°C. The findings indicate that T. drosophilae is well adapted to the relatively cold conditions experienced in early spring and in autumn or at high elevations, when the host pupae could be largely available. The long lifespan of the adults and the ability to parasitize the host at low temperature make T. drosophilae potentially useful for the biocontrol of D. suzukii.


1999 ◽  
Vol 54 (9-10) ◽  
pp. 645-657 ◽  
Author(s):  
Carina Barth ◽  
G. Heinrich Krause

The responses of photosystems (PS) I and II to light stress at 4 °C and 20 °C were studied in leaf discs from three chilling-sensitive plant species, Cucumis sativus, Cucurbita maxima and Nicotiana tabacum, and in the chilling-tolerant Spinacia oleracea. The chilling-sensitive plants were grown at 24 °C under 80 -120 μmol photons m-2 s-1 (Cucumis and Cucurbita) or 30 μmol photons m-2 s-1 (Nicotiana). Spinacia was cultivated outdoors during winter and early spring. The P700 absorbance change around 820 nm served as a relative measure of PSI activity. The potential efficiency of PSII was determined in dark-adapted leaf discs by means of the ratio of variable to maximum chlorophyll (Chl) a fluorescence emission (Fv/Fᴍ). In Cucurbita, Nicotiana and Spinacia, PSI was not or only slightly inhibited by 2 h illumination with 200 μmol m-2 s-1 at 4 °C or with 2000 μmol m-2 s-1 at 20 °C. In leaves of Cucurbita and Nicotiana, exposure to 2000 μmol photons m-2 s-1 at 4 °C resulted in a decline in PSI activity and potential PSII efficiency approximately to the same extent (about 50% within 2 h). In contrast, in Cucumis, both moderate and high light at low temperature caused a PSI inhibition that proceeded considerably faster than the decline in PSII efficiency. Such preferential photoinhibition of PSI was not observed in the other three species tested. In Spinacia, a lower susceptibility of PSI and PSII to photoinhibition at 4 °C was associated with a faster de-epoxidation kinetics of violaxanthin, as compared to the three chilling-sensitive species. In addition, leaves of Spinacia were characterized by a significantly larger pool of xanthophyll-cycle pigments and a higher content of β-carotene based on Chi a+b. When leaves of Cucurbita were preincubated with methylviologen, which catalyzes formation of superoxide anion radicals at the acceptor side of PSI, the decline in potential PSII efficiency under 2000 μmol photons m-2 s-1 at 20 °C and 4 °C was strongly enhanced, whereas the P700 signal was less affected. Our data demonstrate that in the species tested, PSI may be inhibited in vivo besides PSII under light stress, but preferential photoinhibition of PSI is not a general phenomenon in chilling-sensitive plants. At low temperatures, a reduced function of the xanthophyll cycle and of the antioxidative scavenging system might account for enhanced PSI and PSII inhibition in vivo


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1077D-1077
Author(s):  
Wol-Soo Kim ◽  
Xiu-Yu Wu ◽  
Soon-Ju Chung

During the early spring, embolism symptoms may be observed on the leaves of kiwi trees after a severe, cold winter. The morphological character of embolism in young leaves in early spring is typically parachute shaped, at the basal part of kiwi shoots. Deformed leaves were observed at the beginning stage of development. To test the factors, we used water stress, low temperature, and xylem bubble treatments on kiwi vines during the winter season. Low temperature treatments on trees were carried out in a –15 °C chamber for 0, 12, 24, and 48 hours. For the xylem bubble treatment, the trees were injected with 3.5 MPa compressed air at –15 °C for 24 hours. For water stress treatments, the trees were not irrigated until dry soil conditions reached as little as 50% soil moisture. Treated kiwi trees planted in plastic pots (20 cm × 25 cm) were moved into the growth chamber at 25 °C with 12 hours of light, and the rate of deformed leaf symptoms was observed. In all treatments, deformed leaves were observed and bud burst rates were lower than for the control. Therefore, we confirmed that the main factors for deformed leaves were low temperature, xylem bubbles, and water stress.


2018 ◽  
Vol 143 (2) ◽  
pp. 101-109
Author(s):  
Jiaqi Hu ◽  
Hye-Ji Kim ◽  
Houbin Chen ◽  
Biyan Zhou

Short vegetative phase (SVP), a MADS-domain transcription factor, was shown to act as a repressor of flowering in arabidopsis (Arabidopsis thaliana). Although the role of SVPs in flowering is well characterized in the model plant arabidopsis, little is known in evergreen woody litchi (Litchi chinensis). In this study, three litchi SVP homologs (LcSVP1, LcSVP2, and LcSVP3) were cloned, and the bioinformatic analysis of the LcSVPs was carried out to identify their molecular characteristics. Their expression patterns in the apical meristem (AM) during the transition from vegetative to reproductive phase were studied under natural flowering inductive conditions. Also, brassinosteroid (BR) treatment under low temperature conditions was performed to elucidate the role of LcSVPs in the BR-regulated flowering. The results showed that LcSVPs belonged to the MADS superfamily. LcSVP relative expression levels in AMs of the early- and late-flowering cultivars showed decreasing trends with the transition from vegetative to reproductive growth. Under low temperature condition, relative expression levels of LcSVP1, LcSVP2, and LcSVP3 in AMs or panicle primordia showed decreasing trends, whereas those in the AMs of the BR-treated trees remained at relatively high levels. Relative expression analysis of the litchi homolog, flowering locus t 1 (LcFT1), showed that the BR-treated leaves had lower relative expression level than nontreated control leaves. The findings suggest that LcSVPs act as repressors involved in flowering in natural conditions and the BR-regulated flowering.


2001 ◽  
Vol 31 (4) ◽  
pp. 730-737 ◽  
Author(s):  
Samuel E Cox ◽  
Cecil Stushnoff

Changes in metabolism that accompany cold acclimation and deacclimation, such as increasing levels of raffinose family oligosacharides (RFO) during cold acclimation demonstrated in several woody species, are of interest in a search for genetic control of environmental adaptation by cold-hardy woody plants. This study examined the relationship of temperature to endodormancy and cold hardiness in trembling aspen (Populus tremuloides Michx.) buds collected at 1560, 2250, and 2900 m elevation near Fort Collins, Colo. Buds from all sites tolerated at least –85°C in December, and buds from 2900 m, the highest elevation, hardened most quickly in fall and retained their hardiness the longest in late winter and early spring. Exposure to liquid nitrogen caused bud break in normally endodormant (15 November collection date) buds. RFO levels were highly correlated to low temperature during acclimation and to lowest survival temperatures. Endogenous raffinose and stachyose increased as temperatures dropped in early winter and diminished as temperatures rose in spring. Arrhenius plots showed that raffinose accumulation was strongly low-temperature dependent during acclimation. Its loss, while also temperature dependant in spring, was not as pronounced as during fall acclimation. Buds from all three sites survived cryopreservation at –196°C when first prefrozen at 5°C/h and stored >4 h at –20°C or colder. Differential scanning calorimetry data suggest that an aqueous component froze separately from tissues that underwent a glass transition in buds that survived cryopreservation. This study documents a complete dormant season hardiness profile of aspen linking hardiness with changes in endogenous soluble sugars.


1954 ◽  
Vol 86 (1) ◽  
pp. 13-19 ◽  
Author(s):  
W. R. Henson ◽  
R. W. Stark ◽  
W. G. Wellington

In the Canadian Rocky Mountain National Parks, the lodgepole needle miner has a two-year life cycle, so that larvae of each generation are exposed to two successive winters. Although there is no doubt that mortality of these over-wintering larvae is directly attributable to a period of low temperature, there has been some doubt as to whether the bulk of the mortality occurs during the coldest part of the winter, or whether it occurs during periods of low temperature during the late autumn or early spring. Although spring and autumn mortality undoubtedly take place, estimation of the relative importance of mortality during the various seasons must await successive sampling throughout the three seasons. Nevertheless, in the absence of such data, we wish to present evidence that points to the major importance of the weather of the coldest month of the winter to not only the amount but also the vertical distribution of larval mortality.


1987 ◽  
Vol 67 (4) ◽  
pp. 1121-1133 ◽  
Author(s):  
C. J. ANDREWS

Low temperature is a major constraint to the productivity of field crops. It is likely to remain so even in the event of increasing global temperature, because to maximize economic potential producers will tend to use the longest season crops compatible with average weather conditions. Low temperature in the growing season may reduce germination, may retard vegetative growth by inducing metabolic imbalances and can delay or prevent reproductive development. Chilling temperature can damage the tissues of sensitive plants while freezing temperature will damage most tissues during active growth. Low temperature during the winter season may cause the death of overwintering crop plants during their dormant phase. The overwintering habit in most crops results in higher yields due to the abundance of early spring moisture available to the crop. Death of plants may occur during winter by cell membrane disorganization during severe freezing exposure, by anaerobic stress due to flooding and ice encasement, by heaving of plants from soil by the formation of ice lenses, or by the activity of low temperature pathogens under snow cover. Environmental modifications to alleviate cold stress are only practical in a limited number of situations. Genotypic modifications are being made in many field crops to increase their tolerance to cold.Key words: Cold, freezing, chilling, winter survival


Sign in / Sign up

Export Citation Format

Share Document